Photonics Research, 2018, 6 (3): 03000182, Published Online: Jul. 10, 2018  

Optical trapping of single quantum dots for cavity quantum electrodynamics Download: 606次

Pengfei Zhang 1,3,*Gang Song 1,2,*Li Yu 1
Author Affiliations
1 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 e-mail: songgangbupt@163.com
3 e-mail: pfzhang1980@gmail.com
Abstract
We report here a nanostructure that traps single quantum dots for studying strong cavity-emitter coupling. The nanostructure is designed with two elliptical holes in a thin silver patch and a slot that connects the holes. This structure has two functionalities: (1) tweezers for optical trapping; (2) a plasmonic resonant cavity for quantum electrodynamics. The electromagnetic response of the cavity is calculated by finite-difference time-domain (FDTD) simulations, and the optical force is characterized based on the Maxwell’s stress tensor method. To be tweezers, this structure tends to trap quantum dots at the edges of its tips where light is significantly confined. To be a plasmonic cavity, its plasmonic resonant mode interacts strongly with the trapped quantum dots due to the enhanced electric field. Rabi splitting and anti-crossing phenomena are observed in the calculated scattering spectra, demonstrating that a strong-coupling regime has been achieved. The method present here provides a robust way to position a single quantum dot in a nanocavity for investigating cavity quantum electrodynamics.

Pengfei Zhang, Gang Song, Li Yu. Optical trapping of single quantum dots for cavity quantum electrodynamics[J]. Photonics Research, 2018, 6(3): 03000182.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!