首页 > 论文 > Photonics Research > 6卷 > 3期(pp:214-219)

High-speed and high-performance polarization-based quantum key distribution system without side channel effects caused by multiple lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Side channel effects such as temporal disparity and intensity fluctuation of the photon pulses caused by random bit generation with multiple laser diodes in high-speed polarization-based BB84 quantum key distribution (QKD) systems can be eliminated by increasing the DC bias current condition. However, background photons caused by the spontaneous emission process under high DC bias current degrade the performance of QKD systems. In this study, we investigated the effects of spontaneously emitted photons on the system performance in a high-speed QKD system at a clock rate of 400 MHz. Also, we show further improvements in the system performance without side channel effects by utilizing the temporal filtering technique with real-time field-programmable gate array signal processing.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000214

基金项目:ICT R&D Program of Ministry of Science, ICT and Future Planning (MSIP)10.13039/501100003621/IITP (1711035342); Electronics and Telecommunications Research Institute (ETRI)10.13039/501100003696.

收稿日期:2017-11-15

录用日期:2018-01-08

网络出版日期:2018-01-17

作者单位    点击查看

Heasin Ko:Photonic/Wireless Convergence Components Research Division, Electronics and Telecommunications Research Institute, Daejeon 34129, South Koreae-mail: seagod.ko@etri.re.kr
Byung-Seok Choi:Photonic/Wireless Convergence Components Research Division, Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea
Joong-Seon Choe:Photonic/Wireless Convergence Components Research Division, Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea
Kap-Joong Kim:Photonic/Wireless Convergence Components Research Division, Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea
Jong-Hoi Kim:Photonic/Wireless Convergence Components Research Division, Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea
Chun Ju Youn:Photonic/Wireless Convergence Components Research Division, Electronics and Telecommunications Research Institute, Daejeon 34129, South KoreaSchool of Advanced Device Technology, University of Science & Technology, Daejeon 34113, South Korea

联系人作者:Chun Ju Youn(cjyoun@etri.re.kr)

【1】J. Y. Wang, B. Yang, S. K. Liao, L. Zhang, Q. Shen, X. F. Hu, J. C. Wu, S. J. Yang, H. Jiang, Y. L. Tang, B. Zhong, H. Liang, W. Y. Liu, Y. H. Hu, Y. M. Huang, B. Qi, J. G. Ren, G. S. Pan, J. Yin, J. J. Jia, Y. A. Chen, K. Chen, C. Z. Peng, and J. W. Pan, “Direct and full-scale experimental verifications towards ground-satellite quantum key distribution,” Nat. Photonics 7 , 387–393 (2013).

【2】S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7 , 382–386 (2013).

【3】T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144?km,” Phys. Rev. Lett. 98 , 010504 (2007).

【4】S. K. Liao, H. L. Yong, C. Liu, G. L. Shentu, D. D. Li, J. Lin, H. Dai, S. Q. Zhao, B. Li, J. Y. Guan, W. Chen, Y. H. Gong, Y. Li, Z. H. Lin, G. S. Pan, J. S. Pelc, M. M. Fejer, W. Z. Zhang, W. Y. Liu, J. Yin, J. G. Ren, X. B. Wang, Q. Zhang, C. Z. Peng, and J. W. Pan, “Long-distance free-space quantum key distribution in daylight towards inter-satellite communication,” Nat. Photonics 11 , 509–513 (2017).

【5】J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356 , 1140–1144 (2017).

【6】S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549 , 43–47 (2017).

【7】H. Ko, K. Lim, J. Oh, and J. K. K. Rhee, “Informatic analysis for hidden pulse attack exploiting spectral characteristics of optics in plug-and-play quantum key distribution system,” Quantum Inf. Process. 15 , 4265–4282 (2016).

【8】L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4 , 686–689 (2010).

【9】S. Nauerth, M. Furst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” New J. Phys. 11 , 065001 (2009).

【10】K. Nakata, A. Tomita, M. Fujiwara, K. I. Yoshino, A. Tajima, A. Okamoto, and K. Ogawa, “Intensity fluctuation of a gain-switched semiconductor laser for quantum key distribution systems,” Opt. Express 25 , 622–634 (2017).

【11】H. Ko, B. S. Choi, J. S. Choe, K. J. Kim, J. H. Kim, and C. J. Youn, “Critical side channel effects in random bit generation with multiple semiconductor lasers in a polarization-based quantum key distribution system,” Opt. Express 25 , 20045–20055 (2017).

【12】C. H. Bennett, and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in IEEE International Conference on Computers, Systems, and Signal Processing (1984), pp.?175–179.

【13】L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

【14】M. Dusek, M. Jahma, and N. Lutkenhaus, “Unambiguous state discrimination in quantum cryptography with weak coherent states,” Phys. Rev. A 62 , 022306 (2000).

【15】G. Brassard, N. Lutkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85 , 1330–1333 (2000).

【16】X. B. Wang, C. Z. Peng, J. Zhang, L. Yang, and J. W. Pan, “General theory of decoy-state quantum cryptography with source errors,” Phys. Rev. A 77 , 042311 (2008).

【17】M. Hayashi, and R. Nakayama, “Security analysis of the decoy method with the Bennett-Brassard 1984 protocol for finite key lengths,” New J. Phys. 16 , 063009 (2014).

【18】A. Mizutani, M. Curty, C. C. W. Lim, N. Imoto, and K. Tamaki, “Finite-key security analysis of quantum key distribution with imperfect light sources,” New J. Phys. 17 , 093011 (2015).

【19】W. Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91 , 057901 (2003).

【20】H. K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94 , 230504 (2005).

【21】X. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72 , 012326 (2005).

引用该论文

Heasin Ko, Byung-Seok Choi, Joong-Seon Choe, Kap-Joong Kim, Jong-Hoi Kim, and Chun Ju Youn, "High-speed and high-performance polarization-based quantum key distribution system without side channel effects caused by multiple lasers," Photonics Research 6(3), 214-219 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF