首页 > 论文 > Photonics Research > 6卷 > 3期(pp:220-227)

Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Two-dimensional (2D) materials with potential applications in photonic and optoelectronic devices have attracted increasing attention due to their unique structures and captivating properties. However, generation of stable high-energy ultrashort pulses requires further boosting of these materials’ optical properties, such as higher damage threshold and larger modulation depth. Here we investigate a new type of heterostructure material with uniformity by employing the magnetron sputtering technique. Heterostructure materials are synthesized with van der Waals heterostructures consisting of MoS2 and Sb2Te3. The bandgap, carrier mobility, and carrier concentration of the MoS2-Sb2Te3-MoS2 heterostructure materials are calculated theoretically. By using these materials as saturable absorbers (SAs), applications in fiber lasers with Q-switching and mode-locking states are demonstrated experimentally. The modulation depth and damage threshold of SAs are measured to be 64.17% and 14.13 J/cm2, respectively. Both theoretical and experimental results indicate that MoS2-Sb2Te3-MoS2 heterostructure materials have large modulation depth, and can resist high power during the generation of ultrashort pulses. The MoS2-Sb2Te3-MoS2 heterostructure materials have the advantages of low cost, high reliability, and suitability for mass production, and provide a promising solution for the development of 2D-material-based devices with desirable electronic and optoelectronic properties.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000220

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (11674036); Beijing University of Posts and Telecommunications (BUPT)10.13039/501100002766 (IPOC2016ZT04, IPOC2017ZZ05); Beijing Youth Top-Notch Talent Support Program (2017000026833ZK08); Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (U1501501); XAFS Station (BL14W1).

收稿日期:2017-11-20

录用日期:2018-01-16

网络出版日期:2018-01-18

作者单位    点击查看

Wenjun Liu:State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, ChinaBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Ya-Nan Zhu:Beijing Computational Science Research Center, Beijing 100193, China
Mengli Liu:State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Bo Wen:Beijing Computational Science Research Center, Beijing 100193, China
Shaobo Fang:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Hao Teng:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Ming Lei:State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, Chinae-mail: mlei@bupt.edu.cn
Li-Min Liu:Beijing Computational Science Research Center, Beijing 100193, ChinaSchool of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100083, Chinae-mail: limin.liu@csrc.ac.cn
Zhiyi Wei:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

联系人作者:Zhiyi Wei(zywei@iphy.ac.cn)

【1】A. K. Geim, and K. S. Novoselov, “The rise of grapheme,” Nat. Mater. 6 , 183–191 (2007).

【2】F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4 , 839–843 (2009).

【3】F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4 , 611–622 (2010).

【4】Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5 , 411–415 (2011).

【5】Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7 , 699–712 (2012).

【6】A. Martinez, and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7 , 842–845 (2013).

【7】F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5 , 4458 (2014).

【8】F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8 , 899–907 (2014).

【9】Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10 , 227–238 (2016).

【10】T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21 , 3874–3899 (2009).

【11】Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19 , 3077–3083 (2009).

【12】Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4 , 803–810 (2010).

【13】G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22??GHz,” Appl. Phys. Lett. 100 , 161109 (2012).

【14】F. Bonaccorso, and Z. Sun, “Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics,” Opt. Mater. Express 4 , 63–78 (2014).

【15】J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22 , 6165–6173 (2014).

【16】F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9 , 780–793 (2014).

【17】S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26 , 3538–3544 (2014).

【18】H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7 , L77–L83 (2013).

【19】D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8 , 291–296 (2014).

【20】H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10 , 441–450 (2016).

【21】F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3 , 738–742 (2008).

【22】Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8 , 1066–1072 (2016).

【23】R. I. Woodward, and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5 , 1440–1456 (2015).

【24】Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2??GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38 , 5212–5215 (2013).

【25】Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06??μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21 , 29516–29522 (2013).

【26】S. L. Yu, X. Q. Wu, K. R. Chen, B. G. Chen, X. Guo, D. X. Dai, L. M. Tong, W. T. Liu, and Y. R. Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3 , 541–544 (2016).

【27】J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60 , 601–617 (2016).

【28】J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107 , 051108 (2015).

【29】X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3 , 2718 (2013).

【30】H. Jeong, S. Y. Choi, F. Rotermund, K. Lee, and D. Yeom, “All-polarization maintaining passively mode-locked fiber laser using evanescent field interaction with single-walled carbon nanotube saturable absorber,” J. Lightwave Technol. 34 , 3510–3514 (2016).

【31】W. S. Kwon, H. Lee, J. H. Kim, J. Choi, K. Kim, and S. Kim, “Ultrashort stretched-pulse L-band laser using carbon-nanotube saturable absorber,” Opt. Express 23 , 7779–7785 (2015).

【32】X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6 , 26024 (2016).

【33】H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95 , 141103 (2009).

【34】J. Xu, J. Liu, S. D. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20 , 15474–15480 (2012).

【35】Q. L. Bao, and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6 , 3677–3694 (2012).

【36】Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2 , 481–490 (2015).

【37】C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101 , 211106 (2012).

【38】S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21 , 2072–2082 (2013).

【39】H. Chen, Y. S. Chen, J. D. Yin, X. J. Zhang, T. Guo, and P. G. Yan, “High-damage-resistant tungsten disulfide saturable absorption mirror for passively Q-switched fiber laser,” Opt. Express 24 , 16287–16296 (2016).

【40】P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9 , 1871–1877 (2017).

【41】K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23 , 11453–11461 (2015).

【42】D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6 , 23583 (2016).

【43】X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8 , 431–439 (2016).

【44】W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24 , 0901005 (2018).

【45】M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8 , 1522–1534 (2015).

【46】S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23 , 11183–11194 (2015).

【47】K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527 , 770–776 (2015).

【48】H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3 , 1447–1453 (2015).

【49】J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6 , 30361 (2016).

【50】Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25 , 6996–7002 (2015).

【51】Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29 , 1703811 (2017).

【52】Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4 , 045010 (2017).

【53】L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12 , 1700221 (2017).

【54】A. K. Geim, and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499 , 419–425 (2013).

【55】Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23 , 8800105 (2017).

【56】Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13 , 1135–1142 (2014).

【57】G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3 , 937–942 (2015).

【58】H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2 , 832–841 (2015).

【59】Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55 , 081314 (2016).

【60】Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5 , 16372 (2015).

【61】C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol.?129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper?AF2A.

【62】W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457 , 104571M (2017).

【63】P. V. C. Medeiros, S. Stafstr?m, and J. Bj?rk, “Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding,” Phys. Rev. B 89 , 041407 (2014).

【64】P. V. C. Medeiros, S. S. Tsirkin, S. Stafstr?m, and J. Bj?rk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91 , 041116 (2015).

【65】G. Kresse, and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54 , 11169–11186 (1996).

【66】P. E. Bl?chl, “Projector augmented-wave method,” Phys. Rev. B 50 , 17953–17979 (1994).

【67】G. Kresse, and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59 , 1758–1775 (1999).

【68】J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77 , 3865–3868 (1996).

【69】S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27 , 1787–1799 (2006).

【70】T. L. Anderson, and H. B. Krause, “Refinement of the Sb2Te3 structures and their relationship to nonstoichiometric Sb2Te3?ySey compounds,” Acta Crystallogr. Sect. B 30 , 1307–1310 (1974).

【71】S. Bruzzone, and G. Fiori, “Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride,” Appl. Phys. Lett. 99 , 222108 (2011).

【72】S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41 , 2357–2362 (1994).

【73】N. Ma, and D. Jena, “Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors,” 2D Mater. 2 , 015003 (2015).

引用该论文

Wenjun Liu, Ya-Nan Zhu, Mengli Liu, Bo Wen, Shaobo Fang, Hao Teng, Ming Lei, Li-Min Liu, and Zhiyi Wei, "Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials," Photonics Research 6(3), 220-227 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF