首页 > 论文 > 光学学报 > 38卷 > 5期(pp:515004--1)

基于三线阵CCD空间目标的高精度位姿解算

High Precision Pose Calculation of Space Target Based on Three Linear Array CCD

王艳   袁峰   姜宏   陈伟  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了解决三线阵CCD空间目标位姿测量的精度问题,提出一种高精度位姿解算方法。该算法将所有线阵CCD相机的坐标系进行统一化处理。通过建立一个新的误差评价函数,运用改进的正交迭代算法求解位姿参数,并进行非线性优化。仿真和实际测量结果表明,该算法有效避免了因数据恶化或初值选取等因素造成的不收敛或收敛差的问题。与传统算法相比,该算法测量精度和抗噪特性均得到有效改善,计算效率提高了4.6倍,实际测量的6个自由度的最大相对误差为0.71%。该测量系统可实现对空间目标的高精度实时测量,且具有安装方便、应用范围广等优点。

Abstract

In order to solve the accuracy problem of pose measurement of space target based on three linear array CCD, we propose a high precision pose calculation method. This algorithm integrates all linear array CCD camera coordinate systems. The improved orthogonal iterative algorithm is used to solve the pose parameters by establishing a new error evaluation function, and the nonlinear optimization is performed subsequently. Simulation and measurement results show that the proposed algorithm effectively avoids the problem of no-convergence or poor convergence caused by data deterioration or initial value selection. Compared with the traditional algorithm, both the measurement accuracy and noise immunity of the proposed algorithm are effectively improved and the computational efficiency is improved by 4.6 times. The maximum relative error of six degree of freedom is 0.71% in actual measurement. The proposed system can realize high precision and real-time measurement of spatial target, which has the advantages of convenient installation and wide applications.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4;TH741

DOI:10.3788/aos201838.0515004

所属栏目:机器视觉

基金项目:国家自然科学基金(61473100,51075095)

收稿日期:2017-09-26

修改稿日期:2017-12-29

网络出版日期:--

作者单位    点击查看

王艳:哈尔滨工业大学电气工程及自动化学院, 黑龙江 哈尔滨 150001
袁峰:哈尔滨工业大学电气工程及自动化学院, 黑龙江 哈尔滨 150001
姜宏:战略支援部队兴城疗养院, 辽宁 兴城 125105
陈伟:北京航天自动控制研究所三室, 北京 100854

联系人作者:王艳(yanzi2354715@126.com)

备注:王艳(1987-),女,博士研究生,主要从事光电检测、机器视觉、姿态测量等方面的研究。E-mail: yanzi2354715@126.com

【1】Ai L L, Yuan F, Ding Z L. An exterior attitude measurement system for spatial object based on linear CCD[J]. Optics and Precision Engineering, 2008, 16(1): 161-165.
艾莉莉, 袁峰, 丁振良. 应用线阵CCD的空间目标外姿态测量系统[J]. 光学 精密工程, 2008, 16(1): 161-165.

【2】Tzschichholz T, Boge T, Schilling K. Relative pose estimation of satellites using PMD-/CCD-sensor data fusion[J]. Acta Astronautica, 2015, 109: 25-33.

【3】Cui J S, Huo J, Yang M. The high precision positioning algorithm of circular landmark center in visual measurement[J]. Optik, 2014, 125(21): 6570-6575.

【4】Du Y C, Song L, Wan Q H, et al. High Resolution absolute code disk based on linear array image sensor[J]. Acta Optica Sinica, 2016, 36(11): 1112001.
杜颖财, 宋路, 万秋华, 等. 基于线阵图像传感器的高分辨力单圈绝对式编码方法[J]. 光学学报, 2016, 36(11): 1112001.

【5】Li L, Deng Z Q, Li B, et al. Fast vision-based pose estimation iterative algorithm[J]. Optik, 2013, 124(12): 1116-1121.

【6】Li S Q, Xu C, Xie M. A robust O(n) Solution to the perspective-n-point problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1444-1450.

【7】Hu Z Y, Lei C, Wu F C. A short note on P4P problem[J]. Acta Automatic a Sinica, 2001, 27(6): 770-776.
胡占义, 雷成, 吴福朝. 关于P4P问题的一点讨论[J]. 自动化学报, 2001, 27(6): 770-776.

【8】Hmam H, Kim J. Optimal non-iterative pose estimation via convex relaxation[J]. Image and Vision Computing, 2010, 28(11): 1515-1523.

【9】Wu F C, Hu Z Y. A linear method for the PnP problem[J]. Journal of Software, 2003, 14(3): 682-688.
吴福朝, 胡占义. PnP问题的线性求解算法[J]. 软件学报, 2003, 14(3): 682-688.

【10】Philip N, Ananthasayanam M. Relative position and attitude estimation and control schemes for the final phase of an autonomous docking mission of spacecraft[J]. Acta Astronautica, 2003, 52(7): 511-522.

【11】Lepetit V, Moreno-Noguer F, Fua P. EPnP: an accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 2009, 81(2): 155-166.

【12】Zhang S J, Liu F H, Cao X B, et al. Monocular vision-based two-stage Iterative algorithm for relative position and attitude estimation of docking spacecraft[J]. Chinese Journal of Aeronautics, 2010, 23(2): 204-210.

【13】Zhang Z, Zhang X H, Fu D. Accurate and robust iterative pose estimation from line correspondences[J]. Journal of Computer Applications, 2008, 28(2): 326-329, 354.
张政, 张小虎, 傅丹. 一种高精度鲁棒的基于直线对应的位姿估计迭代算法[J]. 计算机应用, 2008, 28(2): 326-329, 354.

【14】Haralick R M, Joo H, Lee C, et al. Pose estimation from corresponding point data[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(6): 1426-1446.

【15】Lu C P, Hager G D, Mjolsness E. Fast and globally convergent pose estimation from video images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(6): 610-622.

【16】Horn B K P, Hilden H M, Negahdaripour S. Closed-form solution of absolute orientation using orthonormal matrices[J]. Journal of the Optical Society of America A: Optics Image Science and Vision, 1988, 5(7): 1127-1135.

【17】Pan H, Huang J Y, Qin S Y. High accurate estimation of relative pose of cooperative space targets based on measurement of monocular vision imaging[J]. Optik, 2014, 125(13): 3127-3133.

【18】Li X, Long G C, Liu J B, et al. Accelerative orthogonal iteration algorithm for camera pose estimation[J]. Acta Optica Sinica, 2015, 35(1): 0115004.
李鑫, 龙古灿, 刘进博, 等. 相机位姿估计的加速正交迭代算法[J]. 光学学报, 2015, 35(1): 0115004.

【19】Umeyama S. Least-squares estimation of transformation parameters between two point patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(4): 376-380.

【20】Tsai R Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journal of Robotics and Automation, 1987, 3(4): 323-344.

引用该论文

Wang Yan,Yuan Feng,Jiang Hong,Chen Wei. High Precision Pose Calculation of Space Target Based on Three Linear Array CCD[J]. Acta Optica Sinica, 2018, 38(5): 0515004

王艳,袁峰,姜宏,陈伟. 基于三线阵CCD空间目标的高精度位姿解算[J]. 光学学报, 2018, 38(5): 0515004

被引情况

【1】朱帆,于芳苏,吴易明,郝冲. P4P法相机姿态标定精度分析. 光学学报, 2018, 38(11): 1115005--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF