Photonics Research, 2018, 6 (5): 05000363, Published Online: Jul. 9, 2018  

Self-locked orthogonal polarized dual comb in a microresonator Download: 712次

Author Affiliations
1 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
4 School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
5 e-mail: wwq@opt.ac.cn
6 e-mail: wfuzhang@opt.ac.cn
Abstract
Dual combs are an emerging tool to obtain unprecedented resolution, high sensitivity, ultrahigh accuracy, broad bandwidth, and ultrafast data updating rate in the fields of molecular spectroscopy, optical metrology, as well as optical frequency synthesis. The recent progress in chip-based microcombs has promoted the on-chip dual-comb measuring systems to a new phase attributed to the large frequency spacing and broad spectrum. In this paper, we demonstrate proof-of-concept dual-comb generation with orthogonal polarization in a single microresonator through pumping both the transverse-electric (TE) and transverse-magnetic (TM) modes simultaneously. The two orthogonal polarized pumps are self-oscillating in a fiber ring cavity. The generated dual comb exhibits excellent stability due to the intrinsic feedback mechanism of the self-locked scheme. The repetition rate of the two orthogonal combs is slightly different because of the mode spacing difference between the TE and TM modes. Such orthogonal polarized dual-combs could be a new comb source for out-of-lab applications in the fields of integrated spectroscopy, ranging measurement, optical frequency synthesis, and microwave comb generation.

Weiqiang Wang, Wenfu Zhang, Zhizhou Lu, Sai T. Chu, Brent E. Little, Qinghua Yang, Lei Wang, Wei Zhao. Self-locked orthogonal polarized dual comb in a microresonator[J]. Photonics Research, 2018, 6(5): 05000363.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!