首页 > 论文 > 激光与光电子学进展 > 55卷 > 6期(pp:63002--1)

Fiber-LIBS技术结合SVM鉴定铝合金牌号

Identification of Aluminum Alloy Grades by Fiber-Laser Induced Breakdown Spectroscopy Combined with Support Vector Machine

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

相比于传统的固体激光器, 光纤激光器有利于设备的小型化和激光诱导击穿光谱(LIBS)技术的推广。将光纤激光器LIBS(Fiber-LIBS)技术应用于铝合金牌号的识别, 采用数据筛选、归一化、支持向量机和主成分分析相结合的分类算法, 对6种牌号共24块铝合金样品按牌号分类。结果表明:与单纯应用支持向量机的分类算法相比, 数据筛选、归一化、支持向量机和主成分分析相结合的分类算法能够将平均预测准确率从92.34%提高到99.83%, 并且可将建模时间缩短一个数量级以上。实验结果表明了光纤激光器应用于LIBS系统中进行金属牌号识别的可行性。

Abstract

Compared with the traditional solid state lasers, the fiber lasers is conducive to the miniaturization of devices and the promotion of laser induced breakdown spectroscopy (LIBS) technology. In this paper, the fiber lasers LIBS (Fiber-LIBS) technology is applied to grade identification of aluminum alloy. The data classification, normalization, support vector machine, and principal component analysis are used to classify the grades of 24 samples of 6 kinds of aluminum alloys. The results show that, compared with the simple classification algorithm based on the support vector machine classification algorithm, the data filtering, normalization, and support vector machine combined with the principal component analysis can make the average prediction accuracy rate increase from 92.34% to 99.83%, and can decrease the modeling time more than one order of magnitude. The experimental results show the feasibility of fiber lasers used in LIBS system for the metal grade recognition.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O657.3

DOI:10.3788/lop55.063002

所属栏目:光谱学

基金项目:国家自然科学基金(61473279)、国家重点研发计划(2016YFF0102502)、中国科学院前沿科学重点研究计划(QYZDJ-SSW-JSC037)、中国科学院青年创新促进会资助(2014179)、沈阳市科技计划(Z17-7-006)

收稿日期:2017-11-22

修改稿日期:2017-12-26

网络出版日期:--

作者单位    点击查看

周中寒:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016中国科学院大学, 北京 100049
田雪咏:新松机器人自动化股份有限公司中央研究院, 辽宁 沈阳 110168
孙兰香:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016
张鹏:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016中国科学院大学, 北京 100049
郭志卫:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016东北大学信息科学与工程学院, 辽宁 沈阳 110819
齐立峰:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016

联系人作者:孙兰香(sunlanxiang@sia.cn)

备注:周中寒(1993-), 男, 硕士研究生, 主要从事激光诱导击穿光谱分析技术方面的研究。E-mail: zhouzhonghan@sia.cn

【1】Zhang S Y. The new metal material, properties, uses and foreign brand control with quick speed manual[M]. Beijing: China Science and Technology Culture Press, 2005: 1167-1318.
张丝雨. 最新金属材料牌号、性能、用途及中外牌号对照速用速查实用手册[M]. 北京: 中国科技文化出版社, 2005: 1167-1318.

【2】Sun L X. Method and experimental research on quantifying multielement alloys based on laser-induced breakdown spectroscopy[D]. Shenyang: Shenyang Institute of Automation, Chinese Academy of Sciences, 2009.
孙兰香. 基于激光诱导击穿光谱的多元合金成分定量分析方法与实验研究[D]. 沈阳: 中国科学院沈阳自动化研究所, 2009.

【3】Wang L, Xu L, Zhou Y, et al. Dual-pulse laser-induced breakdown spectroscopy of Al element in AlCl3 aqueous and mixed compound solutions[J]. Chinese Journal of Lasers, 2014, 41(4): 0415003.
王莉, 徐丽, 周彧, 等. AlCl3水溶液和混合溶液中Al元素的双脉冲激光诱导击穿光谱[J]. 中国激光, 2014, 41(4): 0415003.

【4】Wang C L, Liu J G, Zhao N J, et al. Quantitative analysis of laser-induced breakdown spectroscopy of heavy metals in water based on support-vector machine regression[J]. Acta Optica Sinica, 2013, 33(3): 0330002.
王春龙, 刘建国, 赵南京, 等. 基于支持向量机回归的水体重金属激光诱导击穿光谱定量分析研究[J]. 光学学报, 2013, 33(3): 0330002.

【5】Yang Y L, Wang P, Ma C H. Quantitative analysis of Mn element in liquid steel by LIBS based on particle swarm optimized support vector machine[J]. Laser & Optoelectronics Progress, 2015, 52(7): 073004.
杨友良, 王鹏, 马翠红. 基于粒子群优化支持向量机的LIBS钢液Mn元素定量分析[J]. 激光与光电子学进展, 2015, 52(7): 073040.

【6】Lin Y Z, Yao M Y, Chen T B, et al. Detection of Cu and Cr in soil of navel orange plantation in Gannan by LIBS[J]. Laser & Optoelectronics Progress, 2013, 50(5): 053002.
林永增, 姚明印, 陈添兵, 等. 激光诱导击穿光谱检测赣南脐橙种植土壤的Cu和Cr[J]. 激光与光电子学进展, 2013, 50(5): 053002.

【7】Dong L L, Xiu J S, Li J Y, et al. Feasibility analysis of metal elements in drilling fluid by laser induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 2017, 55(3): 033001.
董丽丽, 修俊山, 李季远, 等. 基于LIBS技术的钻井液中金属元素的可行性分析研究[J]. 激光与光电子学进展, 2017, 55(3): 033001.

【8】Zeng Q D, Guo L B, Li X Y, et al. Quantitative analysis of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(3): 767-772.

【9】Scharun M, Fricke-Begemann C, Noll R. Laser-induced breakdown spectroscopy with multi-kHz fiber laser for mobile metal analysis tasks-a comparison of different analysis methods and with a mobile spark-discharge optical emission spectroscopy apparatus[J]. Spectrochimica Acta Part B, 2013, 87(9): 198-207.

【10】Long X, Li Y X, Wang L L, et al. An intelligent method for grade identification of alloy based on XRF spectrometer: 201110068712.3[P]. 2011-03-22.
龙潇, 李元香, 王玲玲, 等.一种基于XRF光谱仪合金牌号鉴定的智能方法: 201110068712.3[P]. 2011-03-22.

【11】Du Y M. Metal material grade identification method and system: 201510372613.2[P]. 2015-06-30.
杜亚明. 金属材料牌号鉴定方法及系统: 201510372613.2[P]. 2015-06-30.

【12】Wang Q X, Lü Q C, Chen W Y, et al. Grade identification method: 201610006494.3[P]. 2016-01-04.
王庆祥, 吕全超, 陈文益, 等. 牌号识别方法: 201610006494.3[P]. 2016-01-04.

【13】Song X H, Gao S. Method for rapid and nondestructive identification of metal material grade: 201010576063.3[P]. 2010-12-07.
宋晓辉, 高颂. 一种快速、无损鉴定金属材料牌号的方法: 201010576063.3[P]. 2010-12-07.

【14】Moncayo S, Manzoor S, Navarro-Villoslada F, et al. Evaluation of supervised chemometric methods for sample classification by laser induced breakdown spectroscopy[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 146: 354-364.

【15】Zdunek R, Nowak M, Pliński E. Statistical classification of soft solder alloys by laser-induced breakdown spectroscopy: review of methods[J]. Journal of the European Optical Society: Rapid Publications, 2016, 11: 16006i.

【16】Sahoo T K, Negi A, Gundawar M K. Study of preprocessing sensitivity on laser induced breakdown spectroscopy (LIBS) spectral classification[C]∥ International Conference on Advances in Computing. 2015: 137-143.

【17】Wu Y Q, Sun T, Liu X H, et al. Detection of chromium content in soybean oil by laser-induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 2016, 53(4): 043001.
吴宜青, 孙通, 刘秀红, 等. 大豆油中铬元素含量的激光诱导击穿光谱检测[J]. 激光与光电子学进展, 2016, 53(4): 043001.

【18】Aberkane S M, Abdelhamid M, Mokdad F, et al. Sorting zamak alloys via chemometric analysis of their LIBS spectra[J]. Analytical Methods, 2017, 9(24): 3696-3703.

【19】Yu Y, Hao Z Q, Li C M, et al. Identifi cation of plastics by laser-induced breakdown spectroscopy combined with support vector machine algorithm[J]. Acta Physica Sinica, 2013, 62(21): 215201.
于洋, 郝中骐, 李常茂, 等. 支持向量机算法在激光诱导击穿光谱技术塑料识别中的应用研究[J]. 物理学报, 2013, 62(21): 215201.

【20】Yu K Q, Zhao Y R, Liu F, et al. Laser-induced breakdown spectroscopy coupled with multivariate chemometrics for variety discrimination of soil[J]. Scientific Reports, 2016, 6: 27574.

【21】Yang H X, Fu H B, Wang H D, et al. Laser-induced breakdown spectroscopy applied to the characterization of rock by support vector machine combined with principal component analysis[J]. Chinese Physics B, 2016, 25(6): 065201.

【22】Sankaran S, Ehsani R, Morgan K T. Detection of anomalies in citrus leaves using laser-induced breakdown spectroscopy (LIBS)[J]. Applied Spectroscopy, 2015, 69(8): 913-919.

【23】Zhu Y N, Yang P, Yang X Y, et al. Classification of fresh meat species using laser-induced breakdown spectroscopy with support vector machine and principal component analysis[J]. Chinese Journal of Analytical Chemistry, 2017, 45(3): 336-341.
朱毅宁, 杨平, 杨新艳, 等. 支持向量机结合主成分分析辅助激光诱导击穿光谱技术识别鲜肉品种[J]. 分析化学, 2017, 45(3): 336-341.

【24】Shang W L, Li L, Wan M, et al. Intrusion detection algorithm based on optimized one-class support vector machine for industrial control system[J]. Information and Control, 2015, 44(6): 678-684.
尚文利, 李琳, 万明, 等. 基于优化单类支持向量机的工业控制系统入侵检测算法[J]. 信息与控制, 2015, 44(6): 678-684.

【25】Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems & Technology, 2011, 2(3): 1-27.

引用该论文

Zhou Zhonghan,Tian Xueyong,Sun Lanxiang,Zhang Peng,Guo Zhiwei,Qi Lifeng. Identification of Aluminum Alloy Grades by Fiber-Laser Induced Breakdown Spectroscopy Combined with Support Vector Machine[J]. Laser & Optoelectronics Progress, 2018, 55(6): 063002

周中寒,田雪咏,孙兰香,张鹏,郭志卫,齐立峰. Fiber-LIBS技术结合SVM鉴定铝合金牌号[J]. 激光与光电子学进展, 2018, 55(6): 063002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF