基于再生低反射率光纤光栅和饱和吸收体的高温光纤激光传感研究
High-Temperature Fiber Laser Sensing Based on Low-Reflectivity Regenerated Fiber Bragg Grating and Saturable Absorber
摘要
针对再生光纤光栅因反射率低而无法直接用于实际工程中温度测量的问题, 提出一种采用光纤激光传感器结合再生低反射率光纤光栅的方法, 将再生光栅作为光纤激光器谐振腔的低反镜, 采用未抽运的掺铒光纤(EDF)作为饱和吸收体, 实现了线宽压缩, 多纵模抑制。激光器输出激光的阈值电流为68.9 mA。在150 mA的电流下, 300~800 ℃温度范围内, 激光器输出激光稳定, 且输出波长与温度呈良好的线性关系。在升降温测试下, 相关系数均为0.99974, 平均温度灵敏度为15.41 pm/℃, 且在700 ℃下, 3 h的稳定测试中, 激光波长的最大变化量为0.032 nm, 而强度的最大变化量为0.409 dB。实验结果表明, 升降温过程中, 信噪比均高于50 dB, 输出激光具有良好的稳定性, 且没有跳模现象发生。
Abstract
Regenerated fiber Bragg grating (RFBG) cannot be directly used in practical engineering for temperature measurement due to its low reflectivity, so a high-temperature fiber laser sensing method based on low-reflectivity RFBG is proposed. RFBG is used as one mirror of the resonant cavity, and a length of unpumped Er-doped fiber(EDF) as saturated absorber is adopted to compress line width and suppress multi-longitudinal mode of laser. The current threshold of fiber laser is 68.9 mA. At 150 mA, the output laser is stable and has a good linear relationship with temperature when temperature varies in the range of 300 to 800 ℃. In the temperature rising and falling test, the correlation coefficient is up to 0.99974, and the average temperature sensitivity is 15.41 pm/℃. During 3 h of laser stability test at 700 ℃, the maximum variation of the laser wavelength and intensity is 0.032 nm and 0.409 dB, respectively. The results show that the signal-to-noise ratio is higher than 50 dB, the output laser is stable, and there is no mode hopping phenomenon in the temperature-rising and temperature-falling process.
中图分类号:TN253
所属栏目:光纤光学与光通信
基金项目:北京市教委2015年度创新能力提升计划项目(TJSHG201510772016)、北京市优秀人才培养资助项目(2015000020124G074)
收稿日期:2017-12-21
修改稿日期:2017-12-25
网络出版日期:--
作者单位 点击查看
张钰民:北京信息科技大学光电信息与仪器北京市工程研究中心, 北京 100016
杨润涛:北京信息科技大学光电信息与仪器北京市工程研究中心, 北京 100016
骆飞:北京信息科技大学光电信息与仪器北京市工程研究中心, 北京 100016现代测控技术教育部重点实验室, 北京 100192北京信息科技大学光电测试技术北京市重点实验室, 北京 100192
祝连庆:北京信息科技大学光电信息与仪器北京市工程研究中心, 北京 100016现代测控技术教育部重点实验室, 北京 100192北京信息科技大学光电测试技术北京市重点实验室, 北京 100192
联系人作者:祝连庆(zhulianqing@sina.com)
备注:赵小丽(1989-), 女, 硕士研究生, 主要从事光纤光栅传感及光纤激光传感方面的研究。E-mail: zhaoxiaoli8906@163.com
【1】Wang J Y, Tong Z R, Cao Y, et al. The current research and application for optical fiber grating laser sensor[J]. Optical Communication Technology, 2012, 36(4): 19-21.
王洁玉, 童峥嵘, 曹晔, 等. 光纤光栅激光传感器的研究现状及其应用[J]. 光通信技术, 2012, 36(4): 19-21.
【2】Xia J J, Li F. Fabrication of high-temperature-resistant fiber grating sensor by femtosecond laser[J]. Journal of Wuhan Institute of Technology, 2016, 38(2): 200-203.
夏巨江, 李芳. 飞秒激光耐高温光纤光栅传感器的制备[J]. 武汉工程大学学报, 2016, 38(2): 200-203.
【4】Fan L J, Li Y Q, Yao G Z. Optical fiber grating laser sensor and its research progress[J]. Optical Communication Technology, 2017, 41 (1): 37-40.
范利净, 李永倩, 姚国珍. 光纤光栅激光传感器与其研究进展[J]. 光通信技术, 2017, 41(1): 37-40.
【5】Fokine M. Formation of thermally stable chemical composition gratings in optical fibers[J]. Journal of the Optical Society of America B, 2002, 19(8): 1759-1765.
【6】Gunawardena D S, Mat-Sharif K A, Lai M, et al. Thermal activation of regenerated grating in hydrogenated gallosilicate fiber[J]. IEEE Sensors Journal, 2016, 16(6): 1659-1664.
【7】Tu Y, Ye L, Zhou S P, et al. An improved metal-packaged strain sensor based on a regenerated fiber Bragg grating in hydrogen-loaded boron-germanium Co-doped photosensitive fiber for high-temperature applications[J]. Sensors, 2017, 17(3): 431.
【9】Chen R, Yan A, Li M, et al. High-temperature-resistant distributed Bragg reflector fiber laser based on thermally regenerated gratings[C]∥CLEO: Science and Innovations. 2013: 14393549.
【10】Rodriguez-Cobo L, Lopez-Higuera J M. SLM fiber laser stabilized at high temperature[J]. IEEE Photonics Technology Letters, 2016, 28(6): 693-696.
【12】Zhang Y M, Zhu L Q. Study on frequency stabilization of low threshold fiber laser[J]Laser and Infrared, 2014, 44(8): 884-887.
张荫民, 祝连庆. 低阈值光纤激光器稳频特性研究[J]. 激光与红外, 2014, 44(8): 884-887.
【13】Yang R T, Zhu L Q, Zhang Y M, et al. Strain sensing characteristics of fiber laser based on saturable absorption frequency stabilization technology[J]. Nanotechnology and Precision Engineering, 2016, 14(3): 201-205.
杨润涛, 祝连庆, 张钰民,等. 基于可饱和吸收稳频技术的光纤激光应变传感特性研究[J]. 纳米技术与精密工程, 2016, 14(3): 201-205.
【14】He X, Fang X, Liao C, et al. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity[J]. Optics Express, 2009, 17(24): 21773-21781.
【16】Zhang K, Kang J U. C-band wavelength-swept single-longitudinal mode erbium-doped fiber ring laser[J]. Optics Express, 2008, 16(18): 14173-14179.
【17】Wang T. Research on fabrication and property of high temperature regenerated grating[D]. Beijing: Beijing Jiaotong University, 2013.
王涛. 高温再生光纤光栅的制作与性能研究[D]. 北京: 北京交通大学, 2013.
【18】Zhang J,Sun H, Rong Q Z, et al. High-temperature sensor using a Fabry-Perot interferometer based on solid-core photonic crystal fiber[J]. Chinese Optics Letters, 2012, 10(7): 070607.
【19】Chen R, Yan A, Li M, et al. Regenerated distributed Bragg reflector fiber lasers for high-temperature operation[J]. Optics Letters, 2013, 38(14): 2490-2492.
【20】Yang H Z, Qiao X G, Das S, et al. Thermal regenerated grating operation at temperatures up to 1400 ℃ using new class of multimaterial glass-based photosensitive fiber[J]. Optics Letters, 2014, 39(22): 6438-6441.
【21】Alqarni S A, Bernier M, Smelser C W. Annealing of high-temperature stable hydrogen loaded fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2016, 28(9): 939-942.
【22】Richter A. Modeling and design of DBR fiber lasers for sensor applications[C].SPIE, 2017, 10098:100980W.
【23】Tsuda H. Fiber Bragg grating vibration-sensing system, insensitive to Bragg wavelength and employing fiber ring laser[J]. Optics Letters, 2010, 35(14): 2349-2351.
【24】Barrera D, Finazzi V, Villatoro J, et al. Performance of a high-temperature sensor based on regenerated fiber Bragg gratings[C]. SPIE, 2011,7753: 775381.
【25】Yang X X, Zhan L, Shen Q S, et al. High-power single-longitudinal-mode fiber laser with a ring Fabry-Perot resonator and a saturable absorber[J]. IEEE Photonics Technology Letters, 2008, 20(11): 879-881.
【26】Canning J, Cook K, Shao L Y. Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre[J]. Optical Materials Express, 2012, 2(12): 1733-1742.
【27】Foster S, Cranch G, Harrison J, et al. Distributed feedback fiber laser strain sensor technology[J]. Journal of Lightwave Technology, 2017, 35(16): 3514-3530.
【28】Khaleel W A, Aljanabi A H M. High-sensitivity sucrose erbium-doped fiber ring laser sensor[J]. Optical Engineering, 2017, 56(2): 026116.
【29】Li F, He J, Xu T W, et al. Fiber laser sensing technology and its applications[J]. Infrared and Laser Engineering, 2009, 38(6): 1025-1032.
李芳, 何俊, 徐团伟, 等. 光纤激光传感技术及其应用[J]. 红外与激光工程, 2009, 38(6): 1025-1032.
【31】Guan B O, Zhang Y, Wang H J, et al. High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber[J]. Optics Express, 2008, 16(5): 2958-2964.
引用该论文
Zhao Xiaoli,Zhang Yumin,Yang Runtao,Luo Fei,Zhu Lianqing. High-Temperature Fiber Laser Sensing Based on Low-Reflectivity Regenerated Fiber Bragg Grating and Saturable Absorber[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060605
赵小丽,张钰民,杨润涛,骆飞,祝连庆. 基于再生低反射率光纤光栅和饱和吸收体的高温光纤激光传感研究[J]. 激光与光电子学进展, 2018, 55(6): 060605