首页 > 论文 > 中国激光 > 45卷 > 6期(pp:606001--1)

大气湍流影响下基于自适应判决门限的逆向调制自由空间光通信系统误码率性能分析

Bit Error Rate Performance for Modulating Retro-Reflector Free Space Optical Communication System Based on Adaptive Threshold under Atmospheric Turbulence

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

推导了最优误码率(BER)性能对应的判决门限计算公式,并在此判决门限基础上,推导出大气湍流影响下基于自适应判决门限的逆向调制(MRR)自由空间光通信(FSOC)系统BER解析表达式,推导过程考虑了判决门限本身的干扰和探测器噪声的影响。根据所推导的表达式,仿真研究自适应判决门限参数和调制消光比对BER的影响,仿真结果表明:自适应判决门限系统BER性能优于固定判决门限17.5 dB(误码率为10-5,弱湍流),并且当训练数据比特位数大于3时,自适应判决门限系统的BER性能与根据瞬时信道状态信息计算判决门限系统的BER性能相近。

Abstract

Evaluation for decision threshold corresponding to the minimum bit error rate (BER) of modulating retro-reflector (MRR) free space optical communication (FSOC) system is presented. And based on this threshold, the closed form expression of the BER for MRR FSOC system is obtained, considering the effects of adaptive threshold noise and photodetector noise. According to the derived expressions, the effects of adaptive decision threshold parameters and modulation extinction ratio on BER are analyzed. Results show that the BER of MRR FSOC system with adaptive threshold precedes to that with fixed threshold 17.5 dB (BER is 10-5, weak turbulence), and when the number of training data bits is greater than 3, the BER performance of the adaptive decision threshold system is similar to the BER performance of the decision threshold system based on instantaneous channel state information.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.1

DOI:10.3788/cjl201845.0606001

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61705019,91438204)、吉林省青年人才托举工程(2017—2018)、吉林省优秀青年人才基金(20170520161JH)

收稿日期:2017-10-25

修改稿日期:2017-12-10

网络出版日期:--

作者单位    点击查看

李晓燕:长春理工大学空间光电技术国家地方联合工程研究中心, 吉林 长春 130022
张鹏:长春理工大学空间光电技术国家地方联合工程研究中心, 吉林 长春 130022长春理工大学光电工程学院, 吉林 长春 130022
佟首峰:长春理工大学空间光电技术国家地方联合工程研究中心, 吉林 长春 130022

联系人作者:张鹏(zhangpeng@cust.edu.cn)

备注:李晓燕(1988—),女,硕士,工程师,主要从事空间激光通信方面的研究。E-mail: xiaoyanl15@mails.jlu.edu.cn

【1】Han L Q, You Y H. Performance of multiple input multiple output free space optical communication under atmospheric turbulence and atmospheric attenuation[J]. Chinese Journal of Lasers, 2016, 43(7): 0706004.
韩立强, 游雅晖. 大气衰减和大气湍流效应下多输入多输出自由空间光通信的性能[J]. 中国激光, 2016, 43(7): 0706004.

【2】Rosenkrantz E, Arnon S. 1550 nm modulating retroreflector based on coated nanoparticles for free-space optical communication[J]. Applied Optics, 2015, 54(17): 5309-5313.

【3】Goetz P G, Rabinovich W S, Mahon R, et al. Modulating retro-reflector devices and current link performance at the naval research laboratory[C]∥Military Communications Conference, 2007. MILCOM 2007. IEEE, 2007: 1-7.

【4】Goetz P G, Rabinovich W S, Mahon R, et al. Modulating retro-reflector lasercom systems for small unmanned vehicles[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(5): 986-992.

【5】Gil Y, Rotter N, Arnon S. Feasibility of retroreflective transdermal optical wireless communication[J]. Applied Optics, 2012, 51(18): 4232-4239.

【6】Rabinovich W S, Mahon R, Ferraro M, et al. Reduction of scintillation in optical modulating retro-reflector links[J]. Optics Express, 2014, 22(23): 28553-28565.

【7】Rabinovich W S, Mahon R, Ferraro M S, et al. Diversity effects in modulating retro-reflector links[C]. SPIE, 2014, 9080: 90801B.

【8】Plett M, Rabinovich W S, Mahon R, et al. Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array[J]. Optical Engineering, 2008, 47(4): 045001.

【9】Rosenkrantz E, Arnon S. An innovative modulating retro-reflector for free-space optical communication[C]. SPIE, 2013, 8874: 88740D.

【10】Mahon R, Ferraro M S, Goetz P G, et al. Irradiance correlations in retro-reflected beams[J]. Applied Optics, 2015, 54(31): F96-F102.

【11】Mahon R, Moore C I, Ferraro M, et al. Atmospheric turbulence effects measured along horizontal-path optical retro-reflector links[J]. Applied Optics, 2012, 51(25): 6147-6158.

【12】Yang G W, Li Z P, Bi M H, et al. Channel modeling and performance analysis of modulating retroreflector FSO systems under weak turbulence conditions[J]. IEEE Photonics Journal, 2017, 9(2): 16755236.

【13】Avlonitis N, Charlesworth P B. Performance of retro reflector-modulated links under weak turbulence[J]. IET Optoelectronics, 2012, 6(6): 290-297.

【14】Wu X J, Wang H X, Li B F, et al. Affect analysis of atmospheric turbulence on fading characteristics in free-space optical system over different environments[J]. Chinese Journal of Lasers, 2015, 42(5): 0513001.
吴晓军, 王红星, 李笔锋, 等. 不同传输环境下大气湍流对无线光通信衰落特性影响分析[J]. 中国激光, 2015, 42(5): 0513001.

【15】Zhang H Y, Li H Z, Xiao D Y, et al. Performance analysis of spatial-diversity reception over combined effects of atmospheric turbulence[J]. Chinese Journal of Lasers, 2016, 43(4): 0405002.
张慧颖, 李洪祚, 肖冬亚, 等. 大气湍流综合效应下空间分集接收性能研究[J]. 中国激光, 2016, 43(4): 0405002.

【16】Geng D X, Du P F, Wang W, et al. Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere[J]. Optics Letters, 2014, 39(13): 3950-3953.

【17】Nistazakis H E, Karagianni E A, Tsigopoulos A D,et al. Average capacity of optical wireless communication systems over atmospheric turbulence channels[J]. Journal of Lightwave Technology, 2009, 27(8): 974-979.

【18】Liu C, Yao Y, Sun Y X, et al. Analysis of average capacity for free-space optical links with pointing errors over gamma-gamma turbulence channels[J]. Chinese Optics Letters, 2010, 8(6): 537-540.

【19】Song T Y, Kam P Y. A robust GLRT receiver with implicit channel estimation and automatic threshold adjustment for the free space optical channel with IM/DD[J]. Journal of Lightwave Technology, 2014, 32(3): 369-383.

【20】Moradi H, Refai H H, LoPresti P G. Thresholding-based optimal detection of wireless optical signals[J]. Journal of Optical Communications and Networking, 2010, 2(9): 689-700.

【21】Majumdar A K. Free-space laser communication performance in the atmospheric channel[J]. Journal of Optical and Fiber Communications Reports, 2005, 2(4): 345-396.

【22】Li X Y, Zhao X H, Zhang P, et al. Probability density function of turbulence fading in MRR free space optical link and its applications in MRR free space optical communications[J]. IET Communications, 2017, 11(16): 2476-2481.

【23】Adamchik V S, Marichev O I. The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system[C]∥Proceedings of the International Symposium on Symbolic and Algebraic Computation, 1990: 212-224.

【24】Simon M K, Alouini M S. Digital communication over fading channels[M].Hoboken: John Wiley & Sons, 2005.

【25】Abramowitz M, Stegun I A. Handbook of mathematical functions: with formulas, graphs, and mathematical tables[M].New York: Dover Publications, 1965.

【26】Prudnikov A P, Brychkov Y A, Marichev O I. Integrals and series, vol 3: more special functions[M]. New York: Gordon and Breach Science Publishers, 1986.

引用该论文

Li Xiaoyan,Zhang Peng,Tong Shoufeng. Bit Error Rate Performance for Modulating Retro-Reflector Free Space Optical Communication System Based on Adaptive Threshold under Atmospheric Turbulence[J]. Chinese Journal of Lasers, 2018, 45(6): 0606001

李晓燕,张鹏,佟首峰. 大气湍流影响下基于自适应判决门限的逆向调制自由空间光通信系统误码率性能分析[J]. 中国激光, 2018, 45(6): 0606001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF