首页 > 论文 > 中国激光 > 45卷 > 6期(pp:606003--1)

微纳光纤耦合器光致热引起的全光强度调控特性

All-Optical Intensity Modulation Characteristics of Optical Microfiber Coupler Based on Light Induced Thermal Effect

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

对微纳光纤耦合器(OMC)光吸收致热引起的全光强度调控特性进行了理论分析和实验研究。理论分析结果显示,OMC全光强度调控器件的调制响应效率与OMC腰区长度、抽运光在OMC腰区的损耗系数及抽运调制光强成正比,而与OMC腰区耦合光纤的半径成反比。通过实验将强度调制的980 nm抽运光注入OMC以加热其腰区,实现了对OMC传输的1550 nm工作光的全光调控功能。在百微瓦量级的调控光功率作用下,OMC全光强度调控器件即可实现整周期、大调制深度的强度调制,且在较小调制光功率下,调制响应信号幅度与调制信号幅度呈线性响应关系。OMC光热调控最小响应调制光功率为几十微瓦量级。研究成果为开发基于OMC光致热效应的光衰减、光开关及强度调制器等全光功能器件提供了实验数据,并为微纳光子集成光路热稳定性管控及片基量子通信系统安全性研究提供了可借鉴的研究方案。

Abstract

Based on light induced thermal effect, all-optical intensity modulation characteristics of optical microfiber coupler (OMC) are studied. The theoretical analysis shows that, the modulation response efficiency of OMC is proportional to the waist length, loss coefficient, and pump modulation intensity, and is inversely proportional to the radius of the OMC waist coupling fiber. In the experiment research, the intensity modulated 980 nm pump light is injected into the OMC to heat the waist region, and the all-optical control function of the 1550 nm working light transmitted by OMC is obtained. The results show that, the OMC can realize intensity modulation with a whole cycle and a large modulation depth under modulation pump power of hundreds of microwatts. In addition, the amplitude of the modulation response signal has a linear response to the amplitude of intensity modulated 980 nm pump light in a low power region. The threshold of the required modulated pump light power is as low as several dozens of micro watts. The research has provide experimental data for the development of all-optical functional devices, such as optical attenuation, optical switch, intensity modulator, and it also provides a reference scheme for the control of the thermal stability of photonics integrated equipment and the security of quantum communication system.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O431.1

DOI:10.3788/cjl201845.0606003

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61705262)

收稿日期:2017-12-15

修改稿日期:2018-01-15

网络出版日期:--

作者单位    点击查看

于洋:国防科技大学文理学院, 湖南 长沙 410073国防科技大学海洋科学与工程研究院, 湖南 长沙 410073
卞强:国防科技大学海洋科学与工程研究院, 湖南 长沙 410073
张学亮:国防科技大学海洋科学与工程研究院, 湖南 长沙 410073
杨俊波:国防科技大学文理学院, 湖南 长沙 410073

联系人作者:于洋(yuyang08a@nudt.edu.cn)

备注:于洋(1984—),男,博士,讲师,主要从事光纤传感、微纳光纤等方面的研究。E-mail: yuyang08a@nudt.edu.cn

【1】Jung Y, Brambilla G, Richardson D J. Optical microfiber coupler for broadband single-mode operation[J]. Optics Express, 2009, 17(7): 5273-5278.

【2】Ahmad H, Jasim A A. Fabrication and characterization of 2×2 microfiber coupler for generating two output stable multiwavelength fiber lasers[J]. Journal of Lightwave Technology, 2017, 35(19): 4227-4233.

【3】Hernandez-Arriaga M V, Bello-Jimenez M A, Rodriguez-Cobos A, et al. High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers[J]. IEEE Sensors Journal, 2017, 17(2): 333-339.

【4】Sun L, Semenova Y, Wu Q, et al. High sensitivity ammonia gas sensor based on a silica-gel-coated microfiber coupler[J].Journal of Lightwave Technology, 2017, 35(14): 2864-2870.

【5】Pu S L, Mao L M, Yao T J, et al.Microfiber coupling structures for magnetic field sensing with enhanced sensitivity[J]. IEEE Sensors Journal, 2017, 17(18): 5857-5861.

【6】Yan S C, Liu Z Y, Li C, et al. "Hot-wire" microfluidic flowmeter based on a microfiber coupler[J]. Optics Letters, 2016, 41(24): 5680-5683.

【7】Wei F F, Mallik A K, Liu D J, et al. Magnetic field sensor based on a combination of a microfiber coupler covered with magnetic fluid and a Sagnac loop[J]. Scientific Reports, 2017, 7(1): 4725.

【8】Chen Y, Semenova Y, Farrell G, et al.A compact Sagnac loop based on a microfiber coupler for twist sensing[J]. IEEE Photonics Technology Letters, 2015, 27(24): 2579-2582.

【9】Pu S L, Luo L F, Tang J L, et al. Ultrasensitive refractive-index sensors based on tapered fiber coupler with Sagnac loop[J]. IEEE Photonics Technology Letters, 2016, 28(10): 1073-1076.

【10】Wang S S, Yang H J, Liao Y P, et al. High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler[J]. IEEE Photonics Journal, 2016, 8(4): 6804209.

【11】Sun L, Semenova Y, Wu Q, et al. Investigation of humidity and temperature response of a silica gel coated microfiber coupler[J]. IEEE Photonics Journal, 2016, 8(6): 6805407.

【12】Ding M, Wang P F, Brambilla G. A microfiber coupler tip thermometer[J]. Opitcs Express, 2012, 20(5): 5402-5408.

【13】Wang P F, Madugani R, Zhao H Y, et al. Packaged optical add-drop filter based on an optical microfiber coupler and a microsphere[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2277-2280.

【14】Chen J H, Deng G Q, Yan S C, et al. Microfiber-coupler-assisted control of wavelength tuning for Q-switched fiber laser with few-layer molybdenum disulfide nanoplates[J]. Optics Letters, 2015, 40(15): 3576-3579.

【15】Tong L M, Lou J, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides[J]. Optics Express, 2004, 12(6): 1025-1035.

【16】Song Z Q, Yu Y, Zhang X L, et al.Optical microfiber phase modulator directly driven with low-power light[J]. Chinese Optics Letters, 2014, 12(9): 090606.

【17】Ma C X, Sacher W D, Tang Z Y, et al. Silicon photonic transmitter for polarization-encoded quantum key distribution[J]. Optica, 2016, 3(11): 1274-1278.

【18】Sibson P, Erven C, Godfrey M, et al. Chip-based quantum key distribution[J]. Nature Communications, 2017, 8: 13984.

【19】Sibson P, Kennard J E, Stanisic S, et al. Integrated silicon photonics for high-speed quantum key distribution[J]. Optica, 2017, 4(2): 172-177.

【20】Birks T A, Li Y W. The shape of fiber tapers[J]. Journal of Lightwave Technology, 1992, 10(4): 432-438.

【21】Payne F P, Hussey C D, Yataki M S. Polarisation analysis of strongly fused and weakly fused tapered couplers[J]. Electronics Letters, 1985, 21(13): 561-563.

【22】Ankiewicz A, Snyder A W, Zheng X H. Coupling between parallel optical fiber cores-critical examination[J]. Journal of Lightwave Technology, 1986, 4(9): 1317-1323.

【23】Yu Y, Zhang X L, Xie J H, et al. Investigation on fabrication and characteristics of four ports optical microfiber[J]. Chinese Journal of Lasers, 2015, 42(1): 0105002.
于洋, 张学亮, 谢杰辉, 等. 四端口微纳光纤制作及特性研究[J].中国激光, 2015, 42(1): 0105002.

【24】Davis M K, Digonnet M J F, Pantell R H. Thermal effects in doped fibers[J]. Journal of Lightwave Technology, 1998, 16(6): 1013-1023.

【25】Digonnet M J F, Sadowski R W, Shaw H J, et al. Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review[J]. Optical Fiber Technology, 1997, 3(1): 44-64.

【26】Yu Y, Qiang B, Zhang X L, et al. Investigation on an all-optical intensity modulator based on an optical microfiber coupler[J]. Chinese Optics Letters, 2018, 16(4): 040605.

【27】Yu Y, Zhang X L, Song Z Q, et al. Precise control of the optical microfiber tapering process based on monitoring of intermodal interference[J]. Applied Optics, 2014, 53(35): 8222-8228.

【28】Ravets S, Hoffman J E, Kordell P R, et al. Intermodal energy transfer in a tapered optical fiber: optimizing transmission[J]. Journal of the Optical Society of America A, 2013, 30(11): 2361-2371.

引用该论文

Yu Yang,Bian Qiang,Zhang Xueliang,Yang Junbo. All-Optical Intensity Modulation Characteristics of Optical Microfiber Coupler Based on Light Induced Thermal Effect[J]. Chinese Journal of Lasers, 2018, 45(6): 0606003

于洋,卞强,张学亮,杨俊波. 微纳光纤耦合器光致热引起的全光强度调控特性[J]. 中国激光, 2018, 45(6): 0606003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF