High Power Laser Science and Engineering, 2018, 6 (2): 02000e26, Published Online: Jul. 4, 2018  

Hexagonal boron nitride nanosheets incorporated antireflective silica coating with enhanced laser-induced damage threshold Download: 502次

Author Affiliations
1 Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
2 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract
Boron nitride (BN) nanosheets incorporated silica antireflective (AR) coating was successfully prepared on fused silica substrate to improve the antilaser-damage ability of transmissive optics used in high-power laser systems. The BN nanosheets were obtained by urea assisted solid exfoliation, and then incorporated into basic-catalyzed silica sols without any further treatment. The transmission electron microscope (TEM) images indicated that the BN nanosheets generally consisted of 2–10 layers. The antireflective BN/$\text{SiO}_{2}$ coating exhibited excellent transmittance as high as 99.89% at 351 nm wavelength on fused silica substrate. The thermal conductivity $0.135~\text{W}\cdot \text{m}^{-1}\cdot \text{K}^{-1}$ of the BN/$\text{SiO}_{2}$ coating with 10% BN addition was about 23% higher than $0.11~\text{W}\cdot \text{m}^{-1}\cdot \text{K}^{-1}$ of the pure $\text{SiO}_{2}$ AR coating. The laser-induced damage threshold (LIDT) of that BN/$\text{SiO}_{2}$ coating is also 23.1% higher than that of pure $\text{SiO}_{2}$ AR coating. This research provides a potential application of BN/$\text{SiO}_{2}$ coatings in high-power laser systems.

Jing Wang, Chunhong Li, Wenjie Hu, Wei Han, Qihua Zhu, Yao Xu. Hexagonal boron nitride nanosheets incorporated antireflective silica coating with enhanced laser-induced damage threshold[J]. High Power Laser Science and Engineering, 2018, 6(2): 02000e26.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!