首页 > 论文 > Photonics Research > 6卷 > 7期(pp:681-685)

Experimental demonstration of dissipative sensing in a self-interference microring resonator

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

The dissipative sensing based on a self-interference microring resonator composed of a microring resonator and a U-shaped feedback waveguide is demonstrated experimentally. Instead of a frequency shift induced by the phase shift of the waveguide or the microcavity, the dissipative sensing converts the phase shift to the effective external coupling rate, which leads to the change of linewidth of the optical resonance and the extinction ratio in the transmission spectrum. In our experiment, the power dissipated from a microheater on the feedback waveguide is detected by the dissipative sensing mechanism, and the sensitivity of our device can achieve 0.22 dB/mW. This dissipative sensing mechanism provides another promising candidate for microcavity sensing applications.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000681

基金项目:National Key R&D Program of China (2016YFA0301300); National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61575184, 11722436); Natural Science Foundation of Zhejiang Province10.13039/501100004731 (LY16F050009); Open Fund of the State Key Laboratory of Advanced Optical Communication Systems and Networks, China (2016GZKF0JT004); Fundamental Research Funds for the Central Universities; Anhui Initiative in Quantum Information Technologies.

收稿日期:2018-04-02

录用日期:2018-04-28

网络出版日期:2018-04-30

作者单位    点击查看

Shuai Wan:Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, ChinaSynergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Rui Niu:Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, ChinaSynergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Hong-Liang Ren:College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
Chang-Ling Zou:Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, ChinaSynergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Guang-Can Guo:Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, ChinaSynergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Chun-Hua Dong:Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, ChinaSynergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China

联系人作者:Chun-Hua Dong(chunhua@ustc.edu.cn)

【1】P. F. Egan, J. A. Stone, J. H. Hendricks, J. E. Ricker, G. E. Scace, and G. F. Strouse, “Performance of a dual Fabry–Perot cavity refractometer,” Opt. Lett. 40 , 3945–3948 (2015).

【2】N. N. Klimov, S. Mittal, M. Berger, and Z. Ahmed, “On-chip silicon waveguide Bragg grating photonic temperature sensor,” Opt. Lett. 40 , 3934–3936 (2015).

【3】L. Zhang, Z. Y. Li, S. J. Yu, J. X. Mu, W. Fang, and L. M. Tong, “Femtoliter-scale optical nanofiber sensors,” Opt. Express 23 , 28408–28415 (2015).

【4】M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16 , 3155–3159 (2016).

【5】J. Xavier, S. Vincent, F. Meder, and F. Vollmer, “Advances in optoplasmonic sensors—combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles,” Nanophotonics 7 , 1–38 (2018).

【6】C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94 , 231119 (2009).

【7】A. B. Socorro, S. Soltani, I. Del Villar, J. M. Corres, and A. M. Armani, “Temperature sensor based on a hybrid ITO-silica resonant cavity,” Opt. Express 23 , 1930–1937 (2015).

【8】?. K. ?zdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Moni, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111 , E3836–E3844 (2014).

【9】B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111 , 14657–14662 (2014).

【10】B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5 , 024011 (2016).

【11】Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29 , 1604920 (2017).

【12】X. Zhang, Y. Yang, H. Bai, J. Wang, M. Yan, H. Xiao, and T. Wang, “Theoretical aspects and sensing demonstrations of cone-shaped in-wall capillary-based microsphere resonators,” Photon. Res. 5 , 516–520 (2017).

【13】D. Kim, P. Popescu, M. Harfouche, J. Sendowski, M. Dimotsantou, R. Flagan, and A. Yariv, “On-chip integrated differential optical microring refractive index sensing platform based on a laminar flow scheme,” Opt. Lett. 40 , 4106–4109 (2015).

【14】S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, ?. K. ?zdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6 , 346–356 (2018).

【15】M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86 , 1391–1452 (2014).

【16】L. Lei, J. Tang, T. Zhang, H. Guo, Y. Li, C. Xie, C. Shang, Y. Bi, W. Zhang, C. Xue, and J. Liu, “Strain gauge using Si-based optical microring resonator,” Appl. Opt. 53 , 8389–8394 (2014).

【17】E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7 , 509–514 (2012).

【18】Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China Phys. Mech. Astron. 58 , 114208 (2015).

【19】B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Sch?fermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry ,” arXiv: 1802.09738 (2018).

【20】Y. Sun, and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399 , 205–211 (2011).

【21】J. Nishimura, M. Kobayashi, R. Saito, and T. Tanabe, “NaCl ion detection using a silica toroid microcavity,” Appl. Opt. 54 , 6391–6396 (2015).

【22】J. Wang, Z. Yao, T. Lei, and A. W. Poon, “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions,” Sci. Rep. 4 , 7528 (2014).

【23】H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15 , 9139–9146 (2007).

【24】F. Vollmer, and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5 , 591–596 (2008).

【25】L. He, ?. K. ?zdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6 , 428–432 (2011).

【26】H. Ren, C.-L. Zou, J. Lu, L.-L. Xue, S. Guo, Y. Qin, and W. Hu, “ Highly sensitive intensity detection by a self-interference micro-ring resonator,” IEEE Photon. Technol. Lett. 28 , 1469–1472 (2016).

【27】D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17 , 23817–23822 (2009).

【28】J. Wang, and D. Dai, “Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring,” Opt. Lett. 35 , 4229–4231 (2010).

【29】O. A. Marsh, Y. Xiong, and N. Y. Winnie, “Slot waveguide ring-assisted Mach-Zehnder interferometer for sensing applications,” IEEE J. Sel. Top. Quantum Electron. 23 , 440–443 (2017).

【30】H. Ren, C.-L. Zou, J. Lu, Z. Le, Y. Qin, S. Guo, and W. Hu, “Highly-sensitive intensity dissipative sensing in a self-interference micro-ring resonator,” (2017, submitted).

【31】D. Yang, F. Gao, Q.-T. Cao, C. Wang, Y. Ji, and Y.-F. Xiao, “Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities,” Photon. Res. 6 , 99–108 (2018).

【32】C. Zou, C. Dong, J. Cui, F. Sun, Y. Yang, X. Wu, Z. Han, and G. Guo, “Whispering gallery mode optical microresonators: fundamentals and applications,” Sci. Sin. Phys. Mech. Astron. 42 , 1155 (2012).

【33】X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, L. A. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4 , 619–624 (2017).

引用该论文

Shuai Wan, Rui Niu, Hong-Liang Ren, Chang-Ling Zou, Guang-Can Guo, and Chun-Hua Dong, "Experimental demonstration of dissipative sensing in a self-interference microring resonator," Photonics Research 6(7), 681-685 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF