首页 > 论文 > Photonics Research > 6卷 > 7期(pp:692-702)

Plasmonically induced transparency in double-layered graphene nanoribbons

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Near-field coupled plasmonic systems generally achieve plasmonically induced transparency (PIT) using only one-way bright–dark mode coupling. However, it is challenging to realize such well-designed devices, mainly because they depend significantly on the polarization direction. We exploit surface plasmons supported by two crossed layers of graphene nanoribbons (GNRs) to achieve dynamically tunable PIT, where each GNR operates as both the bright and dark modes simultaneously. The proposed PIT can result from either one-way bright–dark mode interactions or bidirectional bright–bright and bright–dark mode hybridized coupling when the polarization is perpendicular/parallel or at an angle to the GNRs, respectively. Additionally, identical ribbon widths yield polarization-insensitive single-window PIT, whereas different ribbon widths produce polarization-dependent double-window PIT. We examine the proposed technique using plasmon wave functions and the transfer matrix method; analytical and numerical results show excellent agreement. This study can provide physical insight into the PIT coupling mechanisms and advance the applicability and versatility of PIT-based sensing platforms and other active devices.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000692

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (11574079, 61505052, 61775055).

收稿日期:2018-01-24

录用日期:2018-04-14

网络出版日期:2018-05-08

作者单位    点击查看

Sheng-Xuan Xia:Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
Xiang Zhai:Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
Ling-Ling Wang:Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
Shuang-Chun Wen:Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China

联系人作者:Ling-Ling Wang(llwang@hnu.edu.cn)

【1】A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408 , 131–314 (2005).

【2】H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).

【3】P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61 , 10484–10503 (2000).

【4】O. Nicoletti, F. de La Pe?a, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502 , 80–84 (2013).

【5】Q. Bao, and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6 , 3677–3694 (2012).

【6】A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6 , 749–758 (2012).

【7】A. K. Geim, and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6 , 183–191 (2007).

【8】D. K. Efetov, and P. Kim, “Controlling electron–phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105 , 256805 (2010).

【9】F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11 , 3370–3377 (2011).

【10】Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7 , 2388–2395 (2013).

【11】L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6 , 630–634 (2011).

【12】S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42 , 3052–3055 (2017).

【13】W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12 , 4977–4982 (2012).

【14】Z. Chen, X. Shan, Y. Guan, S. Wang, J. J. Zhu, and N. Tao, “Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy,” ACS Nano 9 , 11574–11581 (2015).

【15】H. Nasari, M. S. Abrishamian, and P. Berini, “Nonlinear optics of surface plasmon polaritons in subwavelength graphene ribbon resonators,” Opt. Express 24 , 708–723 (2016).

【16】S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24 , 17886–17899 (2016).

【17】X. Zhao, L. Zhu, C. Yuan, and J. Yao, “Tunable plasmon-induced transparency in a grating-coupled double-layer graphene hybrid system at far-infrared frequencies,” Opt. Lett. 41 , 5470–5473 (2016).

【18】B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5 , 5082 (2014).

【19】C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106 , 107403 (2011).

【20】D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86 , 783–786 (2001).

【21】T. H. Qiu, “Electromagnetically induced holographic imaging in hybrid artificial molecule,” Opt. Express 23 , 24537–24546 (2015).

【22】S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101 , 047401 (2008).

【23】J. Q. Liu, Y. X. Zhou, L. Li, P. Wang, and A. V. Zayats, “Controlling plasmon-induced transparency of graphene metamolecules with external magnetic field,” Opt. Express 23 , 12524–12532 (2015).

【24】Z. Bai, and G. Huang, “Plasmon dromions in a metamaterial via plasmon-induced transparency,” Phys. Rev. A 93 , 013818 (2016).

【25】H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103 , 203112 (2013).

【26】J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4 , 6128 (2014).

【27】S. Y. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126 , 271–278 (2018).

【28】H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14 , 4581–4586 (2014).

【29】L. Y. He, T. J. Wang, Y. P. Gao, C. Cao, and C. Wang, “Discerning electromagnetically induced transparency from Autler–Townes splitting in plasmonic waveguide and coupled resonators system,” Opt. Express 23 , 23817–23826 (2015).

【30】Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Europhys. Lett. 111 , 34004 (2015).

【31】H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photon. Technol. Lett. 28 , 1454–1457 (2016).

【32】Y. H. Guo, L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, and X. G. Luo, “Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators,” Opt. Express 20 , 24348–24355 (2012).

【33】X. Shi, D. Z. Han, Y. Y. Dai, Z. F. Yu, Y. Sun, H. Chen, X. H. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21 , 28438–28443 (2013).

【34】C. Hu, L. Wang, Q. Lin, X. Zhai, X. Ma, T. Han, and J. Du, “Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure,” Appl. Phys. Express 9 , 052001 (2016).

【35】Z. Dong, C. Sun, J. Si, and X. Deng, “Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface,” Opt. Express 25 , 12251–12259 (2017).

【36】W. Wang, Y. Li, P. Xu, Z. Chen, J. Chen, J. Qian, J. Qi, Q. Sun, and J. Xu, “Polarization-insensitive plasmonic-induced transparency in planar metamaterial consisting of a regular triangle and a ring,” J. Opt. 16 , 125013 (2014).

【37】X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, and W. Zhang, “Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial,” IEEE J. Sel. Top. Quantum Electron. 19 , 8400707 (2013).

【38】X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101 , 143105 (2012).

【39】S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6 , 1766–1775 (2012).

【40】J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6 , 431–440 (2011).

【41】F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photon. 1 , 135–152 (2014).

【42】F. J. García de Abajo, “Multiple excitation of confined graphene plasmons by single free electrons,” ACS Nano 7 , 11409–11419 (2013).

【43】R. Yu, J. D. Cox, J. R. Saavedra, and F. J. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photon. 4 , 3106–3114 (2017).

【44】I. Silveiro, J. M. P. Ortega, and F. J. García de Abajo, “Quantum nonlocal effects in individual and interacting graphene nanoribbons,” Light: Sci. Appl. 4 , e241 (2015).

【45】D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6 , e16277 (2017).

【46】D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15 , 2582–2587 (2015).

【47】W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6 , 7806–7813 (2012).

【48】Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14 , 299–304 (2013).

【49】S. Balci, O. Balci, N. Kakenov, F. B. Atar, and C. Kocabas, “Dynamic tuning of plasmon resonance in the visible using graphene,” Opt. Lett. 41 , 1241–1244 (2016).

【50】S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons,” Opt. Express 24 , 427–436 (2016).

【51】S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Localized plasmonic field enhancement in shaped graphene nanoribbons,” Opt. Express 24 , 16336–16348 (2016).

【52】J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24 , 5376–5386 (2016).

【53】F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17 , 5423–5428 (2017).

【54】X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15 , 4295–4302 (2015).

【55】S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Graphene surface plasmons with dielectric metasurfaces,” J. Lightwave Technol. 35 , 4553–4558 (2017).

【56】G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable Fano resonance based on a T-shaped graphene nanodimer,” Plasmonics 11 , 381–387 (2016).

【57】Q. Lin, X. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, and S. X. Xia, “A novel design of plasmon-induced absorption sensor,” Appl. Phys. Express 9 , 062002 (2016).

【58】M. Wen, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide,” Europhys. Lett. 116 , 44004 (2017).

【59】P. N. Huang, S. X. Xia, G. L. Fu, M. Z. Liang, M. Qin, X. Zhai, and L. L. Wang, “Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators,” Opt. Commun. 410 , 148–152 (2018).

【60】D. Sarid, and W. Challener, Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications (Cambridge University, 2010).

【61】O. V. Shapoval, J. S. G. Diaz, J. P. Carrier, J. R. Mosig, and A. I. Nosich, “Integral equation analysis of plane wave scattering by coplanar graphene strip gratings in the THz range,” IEEE Trans. Terahertz Sci. Technol. 3 , 666–674 (2013).

【62】S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108 , 047401 (2012).

【63】H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40 , 3647–3650 (2015).

引用该论文

Sheng-Xuan Xia, Xiang Zhai, Ling-Ling Wang, and Shuang-Chun Wen, "Plasmonically induced transparency in double-layered graphene nanoribbons," Photonics Research 6(7), 692-702 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF