首页 > 论文 > Photonics Research > 6卷 > 7期(pp:703-708)

Graphene-enabled electrically controlled terahertz meta-lens

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Metasurfaces have become a new photonic structure for providing potential applications to develop integrated devices with small thickness, because they can introduce an abrupt phase change by arrays of scatterers. To be applied more widely, active metasurface devices are highly desired. Here, a tunable terahertz meta-lens whose focal length is able to be electrically tuned by ~4.45λ is demonstrated experimentally. The lens consists of a metallic metasurface and a monolayer graphene. Due to the dependence of the abrupt phase change of the metasurface on the graphene chemical potential, which can be modulated using an applied gate voltage, the focal length is changed from 10.46 to 12.24 mm when the gate voltage increases from 0 to 2.0 V. Experimental results are in good agreement with the theoretical hypothesis. This type of electrically controlled meta-lens could widen the application of terahertz technology.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000703

基金项目:National Key R&D Program of China (2017YFB1002900); 973 Program of China (2013CBA01702); National Natural Science Foundation of China (NSFC)10.13039/501100001809 (11404224, 1174243, 11774246, 61405012, 61420106014); Excellent Young Scholars Research Fund of Beijing Institute of Technology (BIT).

收稿日期:2018-02-26

录用日期:2018-05-14

网络出版日期:2018-05-15

作者单位    点击查看

Weiguang Liu:Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Bin Hu:Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Zongduo Huang:Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Hongyu Guan:Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Heting Li:Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
Xinke Wang:Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
Yan Zhang:Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, Chinae-mail: yzhang@mail.cnu.edu.cn
Hongxing Yin:Micro and Nanotechnology Research Center, School of Physics, Beijing Institute of Technology, Beijing 100081, China
Xiaolu Xiong:Micro and Nanotechnology Research Center, School of Physics, Beijing Institute of Technology, Beijing 100081, China
Juan Liu:Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Yongtian Wang:Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China

联系人作者:Bin Hu(hubin@bit.edu.cn)

【1】M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1 , 97–105 (2007).

【2】T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10 , 371–379 (2016).

【3】X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11 , 16–18 (2017).

【4】N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities reflection and refraction,” Science 334 , 333–337 (2011).

【5】A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339 , 1232009 (2013).

【6】N. Yu, and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13 , 139–150 (2014).

【7】P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4 , 139–152 (2017).

【8】M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15 , 5358–5362 (2015).

【9】W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13 , 220–226 (2018).

【10】X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25 , 4567–4572 (2013).

【11】D. Hu, X. Wang, S. Feng, J. Ye, and W. Sun, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1 , 186–191 (2013).

【12】Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22 , 25931–25939 (2014).

【13】S. Wang, X. Wang, Q. Kan, J. Ye, S. Feng, W. Sun, P. Han, S. Qu, and Y. Zhang, “Spin-selected focusing and imaging based on metasurface lens,” Opt. Express 23 , 26434–26441 (2015).

【14】X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6 , e17016 (2017).

【15】C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photon. Rev. 10 , 986–994 (2016).

【16】Y. W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16 , 5319–5325 (2016).

【17】H. S. Ee, and R. Agarwal, “Tunable metasurface and flat optical zoom lens on a stretchable substrate,” Nano Lett. 16 , 2818–2823 (2016).

【18】A. K. Geim, and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6 , 183–191 (2007).

【19】A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6 , 749–758 (2012).

【20】M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17 , 3027–3034 (2017).

【21】Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13 , 1257–1264 (2013).

【22】P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6 , 8969 (2015).

【23】L. A. Falkovsky, and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76 , 153410 (2007).

【24】L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6 , 630–634 (2011).

【25】B. Vasi?, M. M. Jakovljevi?, G. Isi?, and R. Gaji?, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103 , 011102 (2013).

【26】W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102 , 241914 (2013).

【27】S. Cakmakyapan, L. Sahin, F. Pierini, W. Strupinski, and E. Ozbay, “Resonance broadening and tuning of split ring resonators by top-gated epitaxial graphene on SiC substrate,” Appl. Phys. Lett. 103 , 181116 (2013).

【28】C. Zeng, X. Liu, and G. Wang, “Electrically tunable graphene plasmonic quasicrystal metasurfaces for transformation optics,” Sci. Rep. 4 , 5763 (2014).

【29】M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal-graphene plasmons,” Nano Lett. 15 , 7099–7104 (2015).

【30】N. Kakenov, T. Takan, V. A. Ozkan, O. Balc?, E. O. Polat, H. Altan, and C. Kocabas, “Graphene-enabled electrically controlled terahertz spatial light modulators,” Opt. Lett. 40 , 1984–1987 (2015).

【31】Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5 , 041027 (2015).

【32】O. Balci, N. Kakenov, E. Karademir, S. Balci, S. Cakmakyapan, E. O. Polat, H. Caglayan, E. Ozbay, and C. Kocabas, “Electrically switchable metadevices via graphene,” Sci. Adv. 4 , eaao1749 (2018).

【33】K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457 , 706–710 (2009).

【34】X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324 , 1312–1314 (2009).

【35】A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97 , 187401 (2006).

【36】W. Liu, B. Hu, Z. Du, Z. Wang, X. Zhou, J. Liu, and Y. Wang, “Enhanced electric tuning of Raman scattering in monolayer graphene by gold nanorods,” Plasmonics 13 , 275–280 (2018).

【37】Z. Huang, B. Hu, W. Liu, J. Liu, and Y. Wang, “Dynamical tuning of terahertz meta-lens assisted by graphene,” J. Opt. Soc. Am. B 34 , 1848–1854 (2017).

【38】M. Born, and E. Wolf, Principals of Optics , 7th ed. (Cambridge University, 1999), p. 561.

【39】V. E. Dorgan, M. H. Bae, and E. Pop, “Mobility and saturation velocity in graphene on SiO2,” Appl. Phys. Lett. 97 , 082112 (2010).

【40】L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129 , 012004 (2008).

引用该论文

Weiguang Liu, Bin Hu, Zongduo Huang, Hongyu Guan, Heting Li, Xinke Wang, Yan Zhang, Hongxing Yin, Xiaolu Xiong, Juan Liu, and Yongtian Wang, "Graphene-enabled electrically controlled terahertz meta-lens," Photonics Research 6(7), 703-708 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF