首页 > 论文 > Photonics Research > 6卷 > 7期(pp:721-725)

Multi-wavelength sampled Bragg grating quantum cascade laser arrays

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

A multi-wavelength sampled Bragg grating (SBG) quantum cascade laser array operating between 7.32 and 7.85 μm is reported. The sampling grating structure, which can be analyzed as a conventional grating multiplied by a sampling function, is fabricated by holographic exposure combined with optical photolithography. The sampling grating period was varied from 8 to 32 μm, and different sampling order (?1st, ?2nd, and ?3rd order) modes were achieved. We propose that higher-order modes with optimized duty cycles can be used to take full advantage of the gain curve and improve the wavelength coverage of the SBG array, which will be beneficial to many applications.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000721

基金项目:National Key Research and Development Program (2017YFB0405300, 2016YFB0402303); National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61734006, 61774150, 61435014, 61627822, 61574136).

收稿日期:2018-02-07

录用日期:2018-04-15

网络出版日期:2018-04-28

作者单位    点击查看

Xue-Feng Jia:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Li-Jun Wang:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Ning Zhuo:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, Chinae-mail: zhuoning@semi.ac.cn
Jin-Chuan Zhang:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
Shen-Qiang Zhai:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
Jun-Qi Liu:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Shu-Man Liu:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Feng-Qi Liu:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Zhanguo Wang:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China

联系人作者:Li-Jun Wang(ljwang@semi.ac.cn)

【1】Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6 , 432–439 (2012).

【2】K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23 , 219–221 (1998).

【3】C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. W. Wang, “Free-space communication based on quantum cascade laser,” J. Semicond. 36 , 094009 (2015).

【4】R. Centeno, D. Marchenko, J. Mandon, S. M. Cristescu, G. Wulterkens, and F. J. M. Harren, “High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection,” Appl. Phys. Lett. 105 , 261907 (2014).

【5】B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45 , 554–565 (2009).

【6】P. Rauter, and F. Capasso, “Multi-wavelength quantum cascade laser arrays,” Laser Photon. Rev. 9 , 452–477 (2015).

【7】S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100 , 261112 (2012).

【8】T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express 20 , 23339–23348 (2012).

【9】D. Guo, J.-Y. Li, L. Cheng, X. Chen, T. Worchesky, and F.-S. Choa, “Widely tunable monolithic mid-infrared quantum cascade lasers using super-structure grating reflectors,” Photonics 3 , 25 (2016).

【10】N. Zhuo, J. Zhang, F. Liu, L. Wang, S. Tan, F. Yan, J. Liu, and Z. Wang, “Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating,” IEEE Photon. Technol. Lett. 25 , 1039–1042 (2013).

【11】F. L. Yan, J. C. Zhang, D. Y. Yao, S. Tan, F. Q. Liu, L. J. Wang, and Z. G. Wang, “Design and fabrication of six-channel complex-coupled DFB quantum cascade laser arrays based on a sampled grating,” Chin. Phys. Lett. 31 , 014209 (2014).

【12】Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4 , 7377 (2014).

【13】J. C. Zhang, F. Q. Liu, D. Y. Yao, L. J. Wang, F. L. Yan, J. Q. Liu, and Z. G. Wang, “Multi-wavelength surface emitting quantum cascade laser based on equivalent phase shift,” J. Appl. Phys. 115 , 033106 (2014).

【14】F. L. Yan, J. C. Zhang, C. W. Liu, N. Zhuo, F. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Sample grating distributed feedback quantum cascade laser array,” Nanoscale Res. Lett. 10 , 406 (2015).

【15】V. Jayaraman, Z. M. Chuang, and A. Larry, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29 , 1824–1834 (1993).

【16】S. Hansmann, H. Hillmer, H. Walter, H. Burkhard, B. Hubner, and E. Kuphal, “Variation of coupling coefficients by sampled gratings in complex coupled distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 1 , 341–345 (1995).

【17】J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113 , 153101 (2013).

引用该论文

Xue-Feng Jia, Li-Jun Wang, Ning Zhuo, Jin-Chuan Zhang, Shen-Qiang Zhai, Jun-Qi Liu, Shu-Man Liu, Feng-Qi Liu, and Zhanguo Wang, "Multi-wavelength sampled Bragg grating quantum cascade laser arrays," Photonics Research 6(7), 721-725 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF