首页 > 论文 > Photonics Research > 6卷 > 7期(pp:726-733)

Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

The realization of an efficient optical sensor based on a photonic crystal metasurface supporting bound states in the continuum is reported. Liquids with different refractive indices, ranging from 1.4000 to 1.4480, are infiltrated in a microfluidic chamber bonded to the sensing dielectric metasurface. A bulk liquid sensitivity of 178 nm/RIU is achieved, while a Q-factor of about 2000 gives a sensor figure of merit up to 445 in air at both visible and infrared excitations. Furthermore, the detection of ultralow-molecular-weight (186 Da) molecules is demonstrated with a record resonance shift of 6 nm per less than a 1 nm thick single molecular layer. The system exploits a normal-to-the-surface optical launching scheme, with excellent interrogation stability and demonstrates alignment-free performances, overcoming the limits of standard photonic crystals and plasmonic resonant configurations.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000726

收稿日期:2018-04-16

录用日期:2018-05-21

网络出版日期:2018-05-21

作者单位    点击查看

Silvia Romano:Institute for Microelectronics and Microsystems, Unit of Naples, National Council of Research, Via Pietro Castellino, 80131 Naples, Italy
Gianluigi Zito:Institute of Protein Biochemistry, National Council of Research, Via Pietro Castellino, 80131 Naples, Italy
Stefania Torino:Institute for Microelectronics and Microsystems, Unit of Naples, National Council of Research, Via Pietro Castellino, 80131 Naples, Italy
Giuseppe Calafiore:Lawrence Berkeley National Laboratory, Molecular Foundry Division, 67 Cyclotron Road, Berkeley, California 94720, USA
Erika Penzo:Lawrence Berkeley National Laboratory, Molecular Foundry Division, 67 Cyclotron Road, Berkeley, California 94720, USA
Giuseppe Coppola:Institute for Microelectronics and Microsystems, Unit of Naples, National Council of Research, Via Pietro Castellino, 80131 Naples, Italy
Stefano Cabrini:Lawrence Berkeley National Laboratory, Molecular Foundry Division, 67 Cyclotron Road, Berkeley, California 94720, USA
Ivo Rendina:Institute for Microelectronics and Microsystems, Unit of Naples, National Council of Research, Via Pietro Castellino, 80131 Naples, Italy
Vito Mocella:Institute for Microelectronics and Microsystems, Unit of Naples, National Council of Research, Via Pietro Castellino, 80131 Naples, Italy

联系人作者:Silvia Romano(silvia.romano@na.imm.cnr.it)

【1】J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54 , 3–15 (1999).

【2】R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21 , 1823–1835 (2000).

【3】X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620 , 8–26 (2008).

【4】T. Linnert, P. Mulvaney, and A. Henglein, “Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate,” J. Phys. Chem. 97 , 679–682 (1993).

【5】R. P. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213 , 35–45 (1988).

【6】E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11 , 635–649 (1996).

【7】J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B 41 , 207–211 (1997).

【8】J. H. H. Liao, and C. L. Nehl, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine 1 , 201–208 (2006).

【9】J. Anker, W. Paige Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7 , 442–453 (2008).

【10】A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8 , 867–871 (2009).

【11】J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21 , 25159–25166 (2013).

【12】W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37 , 3366–3368 (2012).

【13】Y.-N. Zhang, Y. Zhao, and R.-Q. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuators A 233 , 374–389 (2015).

【14】R. D. M. J. Joannopoulos, S. G. Johnson, and J. N. Winn, Photonic Crystals: Molding the Flow of Light , 2nd ed. (Princeton University Press, 2008).

【15】T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. H?fling, M. Kamp, and A. Forchel, “Photonic crystal cavity-based gas sensor,” Appl. Phys. Lett. 92 , 261112 (2008).

【16】A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94 , 063503 (2009).

【17】S.-H. Kwon, T. Sunner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16 , 11709–11717 (2008).

【18】H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79 , 085112 (2009).

【19】D. Pergande, T. M. Geppert, A. Von Rhein, S. L. Schweizer, R. B. Wehrspohn, S. Moretton, and A. Lambrecht, “Miniature infrared gas sensors using photonic crystals,” J. Appl. Phys. 109 , 083117 (2011).

【20】Y. Zou, S. Chakravarty, D. N. Kwong, W. C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20 , 171–180 (2014).

【21】J. von Neumann, and E. P. Wigner, “über merkwürdige diskrete Eigenwerte,” Phys. Z. 30 , 465–467 (1929).

【22】F. H. Stillinger, and D. R. Herrick, “Bound states in the continuum,” Phys. Rev. A 11 , 446–454 (1975).

【23】Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107 , 183901 (2011).

【24】D. Marinica, A. Borisov, and S. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100 , 183902 (2008).

【25】M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett. 108 , 070401 (2012).

【26】E. N. Bulgakov, and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78 , 075105 (2008).

【27】R. Porter, and D. V. Evans, “Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays,” Wave Motion 43 , 29–50 (2005).

【28】C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Solja?i?, “Bound states in the continuum,” Nat. Rev. Mater. 1 , 16048 (2016).

【29】V. Mocella, and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B 92 , 155117 (2015).

【30】A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541 , 196–199 (2017).

【31】B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110 , 13711–13716 (2013).

【32】C. Wu, N. Arju, J. Fan, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5 , 3892 (2016).

【33】S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11 , 526 (2018).

【34】F. S. Damos, R. C. Luz, and L. T. Kubota, “Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance,” Langmuir 21 , 602–609 (2005).

【35】K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15 , 621–627 (2016).

【36】S. Romano, A. C. De Luca, E. De Tommasi, S. Cabrini, I. Rendina, and V. Mocella, “Observation of resonant states in negative refractive photonic crystals,” J. Eur. Opt. Soc. 9 , 14006 (2014).

【37】S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light: Sci. Appl. 3 , e120 (2014).

【38】E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102 , 081113 (2013).

【39】G. Zito, G. Rusciano, and A. Sasso, “Dark spots along slowly scaling chains of plasmonic nanoparticles,” Opt. Express 24 , 13584–13589 (2016).

【40】G. Zito, G. Rusciano, and A. Sasso, “Enhancement factor statistics of surface enhanced raman scattering in multiscale heterostructures of nanoparticles,” J. Chem. Phys. 145 , 054708 (2016).

【41】Y. Xia, and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28 , 153–184 (1998).

【42】C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5 , 3892 (2014).

【43】A. B. Dahlin, J. O. Tegenfeldt, and F. H??k, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78 , 4416–4423 (2006).

【44】E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29 , 1093–1095 (2004).

【45】D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93 , 181103 (2008).

【46】Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20 , 6900710 (2014).

【47】J. Pottage, E. Silvestre, and P. S. J. Russell, “Vertical-cavity surface-emitting resonances in photonic crystal films,” J. Opt. Soc. Am. A 18 , 442–447 (2001).

【48】S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1 , 590–597 (2014).

引用该论文

Silvia Romano, Gianluigi Zito, Stefania Torino, Giuseppe Calafiore, Erika Penzo, Giuseppe Coppola, Stefano Cabrini, Ivo Rendina, and Vito Mocella, "Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum," Photonics Research 6(7), 726-733 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF