首页 > 论文 > Photonics Research > 6卷 > 7期(pp:734-742)

Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

In this paper, high-speed surface-illuminated Ge-on-Si pin photodiodes with improved efficiency are demonstrated. With photon-trapping microhole features, the external quantum efficiency (EQE) of the Ge-on-Si pin diode is >80% at 1300 nm and 73% at 1550 nm with an intrinsic Ge layer of only 2 μm thickness, showing much improvement compared to one without microholes. More than threefold EQE improvement is also observed at longer wavelengths beyond 1550 nm. These results make the microhole-enabled Ge-on-Si photodiodes promising to cover both the existing C and L bands, as well as a new data transmission window (1620–1700 nm), which can be used to enhance the capacity of conventional standard single-mode fiber cables. These photodiodes have potential for many applications, such as inter-/intra-datacenters, passive optical networks, metro and long-haul dense wavelength division multiplexing systems, eye-safe lidar systems, and quantum communications. The CMOS and BiCMOS monolithic integration compatibility of this work is also attractive for Ge CMOS, near-infrared sensing, and communication integration.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000734

基金项目:Army Research Office (ARO)10.13039/100000183 (W911NF-14-4-0341); W&WSens Devices, Inc.

收稿日期:2018-03-20

录用日期:2018-04-26

网络出版日期:2018-05-09

作者单位    点击查看

Hilal Cansizoglu:Electrical and Computer Engineering, University of California—Davis, Davis, California 95618, USA
Cesar Bartolo-Perez:Electrical and Computer Engineering, University of California—Davis, Davis, California 95618, USA
Yang Gao:Electrical and Computer Engineering, University of California—Davis, Davis, California 95618, USA
Ekaterina Ponizovskaya Devine:Electrical and Computer Engineering, University of California—Davis, Davis, California 95618, USAW&WSens Devices, Inc., 4546 El Camino, Suite 215, Los Altos, California 94022, USA
Soroush Ghandiparsi:Electrical and Computer Engineering, University of California—Davis, Davis, California 95618, USA
Kazim G. Polat:Electrical and Computer Engineering, University of California—Davis, Davis, California 95618, USA
Hasina H. Mamtaz:Electrical and Computer Engineering, University of California—Davis, Davis, California 95618, USA
Toshishige Yamada:W&WSens Devices, Inc., 4546 El Camino, Suite 215, Los Altos, California 94022, USAElectrical Engineering, Baskin School of Engineering, University of California, Santa Cruz, California 95064, USA
Aly F. Elrefaie:Electrical and Computer Engineering, University of California—Davis, Davis, California 95618, USAW&WSens Devices, Inc., 4546 El Camino, Suite 215, Los Altos, California 94022, USA
Shih-Yuan Wang:W&WSens Devices, Inc., 4546 El Camino, Suite 215, Los Altos, California 94022, USA
M. Saif Islam:Electrical and Computer Engineering, University of California—Davis, Davis, California 95618, USAe-mail: sislam@ucdavis.edu

联系人作者:Yang Gao(yangao@ucdavis.edu)

【1】O. Vermesan, and P. Friess, Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems (River, 2013).

【2】Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50 , s67–s72 (2012).

【3】V. Houtsma, D. van Veen, and E. Harstead, “Recent progress on standardization of next-generation 25, 50, and 100G EPON,” J. Lightwave Technol. 35 , 1228–1234 (2017).

【4】Z. Li, Y.-M. Jung, N. Simakov, P. Shardlow, A. Heidt, A. Clarkson, S.-U. Alam, and D. J. Richardson, “Extreme short wavelength operation (1.65–1.7??μm) of silica-based thulium-doped fiber amplifier,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper?Tu2C.1.

【5】S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6 , 28939 (2016).

【6】H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81??Gb/s WDM transmission at 2??μm over 1.15??km of low-loss hollow core photonic bandgap fiber,” in European Conference on Optical Communication (ECOC) (IEEE, 2014).

【7】T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50 , s31–s42 (2012).

【8】P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7 , 378–381 (2013).

【9】R. Sabatini, M. A. Richardson, H. Jia, and D. Zammit-Mangion, “Airborne laser systems for atmospheric sounding in the near infrared,” Proc. SPIE 8433 , 843314 (2012).

【10】L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19 , 056004 (2014).

【11】S. Gunapala, B. Levine, D. Ritter, R. Hamm, and M. Panish, “InGaAs/InP long wavelength quantum well infrared photodetectors,” Appl. Phys. Lett. 58 , 2024–2026 (1991).

【12】H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310??GHz bandwidth,” Electron. Lett. 36 , 1809–1810 (2000).

【13】H. Cansizoglu, E. P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: enhancing photon-material interactions via low-dimensional structures,” IEEE Trans. Electron Devices 65 , 372–381 (2018).

【14】H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures,” IEEE Trans. Electron Devices 65 , 382–391 (2018).

【15】J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47 , 101–138 (2003).

【16】S. Sze, Physics of Semiconductor Devices (Wiley, 1981).

【17】H. Ye, and J. Yu, “Germanium epitaxy on silicon,” Sci. Technol. Adv. Mater. 15 , 024601 (2014).

【18】J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4 , 527–534 (2010).

【19】A. Beling, and J. C. Campbell, “High-speed photodiodes,” IEEE J. Sel. Top. Quantum Electron. 20 , 57–63 (2014).

【20】A. N. Larsen, “Epitaxial growth of Ge and SiGe on Si substrates,” Mater. Sci. Semicond. Process. 9 , 454–459 (2006).

【21】Z. Huang, J. Oh, and J. C. Campbell, “Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers,” Appl. Phys. Lett. 85 , 3286–3288 (2004).

【22】L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72 , 3175–3177 (1998).

【23】H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75 , 2909–2911 (1999).

【24】H.-Y. Yu, J.-H. Park, A. K. Okyay, and K. C. Saraswat, “Selective-area high-quality germanium growth for monolithic integrated optoelectronics,” IEEE Electron Device Lett. 33 , 579–581 (2012).

【25】D. Houghton, “Strain relaxation kinetics in Si1-xGex/Si heterostructures,” J. Appl. Phys. 70 , 2136–2151 (1991).

【26】F. LeGoues, B. Meyerson, and J. Morar, “Anomalous strain relaxation in SiGe thin films and superlattices,” Phys. Rev. Lett. 66 , 2903–2906 (1991).

【27】O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17 , 175–177 (2005).

【28】Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11 , 301–308 (2017).

【29】Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000??nm wavelength,” ACS Photon. 4 , 2053–2060 (2017).

【30】S. Peng, and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13 , 993–1005 (1996).

【31】Q. C. Nie, and B. K. Chen, “Application of ADE-FDTD method in lossy Lorentz media,” in Advanced Materials Research (Trans Tech, 2014), pp.?2486–2489.

【32】H. Wen, and E. Bellotti, “Rigorous theory of the radiative and gain characteristics of silicon and germanium lasing media,” Phys. Rev. B 91 , 035307 (2015).

【33】M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7 , 466–472 (2013).

【34】Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform,” Photon. Res. 5 , 702–709 (2017).

【35】J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87 , 011110 (2005).

【36】J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520 , 3354–3360 (2012).

【37】J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection,” J. Appl. Phys. 95 , 5905–5913 (2004).

【38】L. Colace, M. Balbi, G. Masini, G. Assanto, H.-C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10??Gbit/s,” Appl. Phys. Lett. 88 , 101111 (2006).

【39】D. Su, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21 , 672–674 (2009).

【40】L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76 , 1231–1233 (2000).

【41】C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Devices 60 , 1183–1187 (2013).

【42】Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283 , 3404–3407 (2010).

【43】K. Rush, S. Draving, and J. Kerley, “Characterizing high-speed oscilloscopes,” IEEE Spectr. 27 , 38–39 (1990).

【44】H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, and A. F. Elrefaie, “Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060??nm,” Proc. SPIE 10349 , 103490U (2017).

【45】B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, and P. Bakopoulos, “A 64??Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper?M3C.5.

【46】D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, and J. Inasaka, “A 25-Gb/s 5 × 5??mm 2 chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” J. Lightwave Technol. 34 , 2988–2995 (2016).

【47】A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550??nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21 , 22098–22113 (2013).

【48】M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, and H. Zeng, “Laser ranging at 1550??nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19 , 13497–13502 (2011).

【49】R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3 , 696–705 (2009).

引用该论文

Hilal Cansizoglu, Cesar Bartolo-Perez, Yang Gao, Ekaterina Ponizovskaya Devine, Soroush Ghandiparsi, Kazim G. Polat, Hasina H. Mamtaz, Toshishige Yamada, Aly F. Elrefaie, Shih-Yuan Wang, and M. Saif Islam, "Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm," Photonics Research 6(7), 734-742 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF