首页 > 论文 > 光学学报 > 38卷 > 7期(pp:701001--1)

散射模型和有效粒子半径对卷云光学厚度反演的影响

Influence of Scattering Model and Effective Particle Radius on Cirrus Cloud Optical Thickness Retrieval

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为研究不同散射模型和有效粒子半径对卷云光学厚度反演的影响,计算了不同光学厚度下,一般种类混合模型(GHM)、实心柱状模型(SC)和聚合物实心柱状模型(ASC)取不同有效粒子半径时的反射率。理论分析了不同散射模型及其不同有效粒子半径对卷云光学厚度反演结果的影响。使用基于倍加累加法的矢量辐射传输模型RT3计算3种模型卷云光学厚度查找表,基于POLDER数据,采用查找表法进行卷云光学厚度反演实验,实验结果与理论分析一致。结果可知:采用不同散射模型反演得到的卷云光学厚度存在较大差异,相比GHM和SC模型,ASC模型卷云光学厚度反演结果更接近POLDER产品;有效粒子半径越大,光学厚度反演结果越大,GHM和SC的增幅较大,而ASC增幅很小。因此,在不具备有效粒子半径反演能力时,建议采用ASC模型反演卷云光学厚度,以减小有效粒子半径变化对反演结果的影响。上述研究对我国GF-5卫星的卷云光学厚度反演的散射模型选取及反演结果评价具有参考价值。

Abstract

In order to investigate the influence of different scattering models and effective particle radii on the cirrus cloud optical thickness retrieval, we simulate the reflectance of different effective radii based on General Habit Mixture (GHM), Solid Column (SC) and Aggregates of Solid Column (ASC) under different cirrus cloud optical thicknesses. The influence of different scattering models and effective radii on the retrieval results of the cirrus cloud optical thickness is theoretically analyzed. The cirrus cloud optical thickness look-up tables of GHM, SC and ASC are calculated by radiative transfer model RT3 based on vector doubling-adding method. The cirrus cloud optical thickness is retrieved by the look-up table method based on the POLDER data. It is found that the retrieval results are consistent with the theoretical analysis. The theoretical analysis and retrieval results show that, for different models, the cirrus cloud optical thickness retrieval results are obviously different. Compared with the GHM and SC models, the retrieval results of cirrus cloud optical thickness by the ASC model are closer to POLDER products. In addition, for these models, the retrieval results of the cirrus cloud optical thickness increase with the increase of effective radius. The results of the ASC model are no obvious increase with the increase of the effective radius, and the results of the GHM and SC models increase greatly with the increase of effective radius. Therefore, when the instrument lacks the ability to retrieve the effective radius, it is suggested that the ASC model can be used to retrieve the cirrus cloud optical thickness, so as to reduce the influence of the effective particle radius variation on the retrieval results. This study can help to develop cirrus cloud optical thickness algorithms for GF-5 satellite in China.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:P407.4

DOI:10.3788/aos201838.0701001

所属栏目:大气与海洋光学

基金项目:国家国防科工局高分专项(民用部分)卫星应用共性关键技术项目(32-Y20A22-9001-15/17)、中国资源卫星应用中心支持项目

收稿日期:2017-11-20

修改稿日期:2018-01-26

网络出版日期:--

作者单位    点击查看

李树:中国科学院安徽光学精密机械研究所通用光学定标与表征技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
孙晓兵:中国科学院安徽光学精密机械研究所通用光学定标与表征技术重点实验室, 安徽 合肥 230031
提汝芳:中国科学院安徽光学精密机械研究所通用光学定标与表征技术重点实验室, 安徽 合肥 230031
黄红莲:中国科学院安徽光学精密机械研究所通用光学定标与表征技术重点实验室, 安徽 合肥 230031
陈震霆:中国科学院安徽光学精密机械研究所通用光学定标与表征技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
乔延利:中国科学院安徽光学精密机械研究所通用光学定标与表征技术重点实验室, 安徽 合肥 230031

联系人作者:孙晓兵(xbsun@aiofm.ac.cn)

备注:李树(1988-),男,博士研究生,主要从事大气光学遥感方面的研究。E-mail: lishu_owen@sina.com

【1】Liou K N. Influence of cirrus clouds on weather and climate processes: a global perspective[J]. Monthly Weather Review, 1986, 114(6): 1167-1199.

【2】Zhang Z. Satellite-based remote sensing of cirrus clouds: hyperspectral radiative transfer modeling, analysis of uncertainties in in-situ cloud extinction measurements and inter comparison of cirrus retrievals from A-train instruments[D]. Texas: Texas A & M University, 2009: 78-135.

【3】Zhou C, Dessler A E, Zelinka M D, et al. Cirrus feedback on interannual climate fluctuations[J]. Geophysical Research Letters, 2014, 41(24): 9166-9173.

【4】Houghton J T, Ding Y H, Griggs J, et al. Climate change 2001: the scientific basis[M]. New York: Cambridge University Press, 2001: 349-416.

【5】Salomonson V V, Barnes W L, Maymon P W, et al. MODIS: advanced facility instrument for studies of the Earth as a system[J]. IEEE Transactions on Geoscience & Remote Sensing, 1989, 27(2): 145-153.

【6】Waquet F, Cornet C, Deuzé J L, et al. Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarizationmeasurements[J]. Atmospheric Measurement Techniques, 2013, 6(4): 991-1016.

【7】Yang W F, Hong J, Qiao Y L. Optical design of spaceborne directional polarization camera[J]. Acta Optica Sinica, 2015, 35(8): 0822005.
杨伟锋, 洪津, 乔延利. 星载多角度偏振成像仪光学系统设计[J]. 光学学报, 2015, 35(8): 0822005.

【8】Baum B A, Heymsfield A J, Yang P, et al. Bulk scattering properties for the remote sensing of ice clouds. part I: microphysical data and models[J]. Journal of Applied Meteorology, 2005, 44(12): 1885-1895.

【9】C-Labonnote L, Brogniez G, Buriez J C, et al. Polarized light scattering by inhomogeneous hexagonal monocrystals: validation with ADEOS-POLDER measurements[J]. Journal of Geophysical Research Atmospheres, 2001, 106(D11): 12139-12153.

【10】Yang P, Liou K N, Wyser K, et al. Parameterization of the scattering and absorption properties of individual ice crystals[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D4): 4699-4718.

【11】Yang P, Bi L, Baum B A, et al. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm[J]. Journals of the Atmospheric Sciences, 2013, 70(1): 330-347.

【12】Baum B A, Yang P, Heymsfield A J, et al. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 146: 123-139.

【13】Mishchenko M I, Travis L D, Mackowski D W. T-matrix computations of light scattering by nonspherical particles: a review[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996, 55(5): 535-575.

【14】Yee K. Numerical solution of initial boundary value problems involving Maxwell′s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.

【15】Yurkin M A, Maltsev V P, Hoekstra A G. The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength[J]. Journal of Quantitative Spectroscopyand Radiative Transfer, 2007, 106(1/2/3): 546-557.

【16】Bi L, Yang P, Kattawar G W, et al. Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm[J]. Journal of Geophysical Research Atmospheres, 2009, 114(22): 2191-2196.

【17】Liou K N. An introduction to atmospheric radiation[M]. California: Academic Press, 2002: 317-324.

【18】Cheng T H, Gu X F, Chen L F, et al. Multi-angular polarized characteristics of cirrus clouds[J]. Acta Physica Sinica, 2008, 57(8): 5323-5332.
程天海, 顾行发, 陈良富, 等. 卷云多角度偏振特性研究[J]. 物理学报, 2008, 57(8): 5323-5332.

【19】Evans K F, Stephens G L. A new polarized atmospheric radiative transfer model[J]. Journal of Quantitative Spectroscopyand Radiative Transfer, 1991, 46(5): 413-423.

【20】King M D. Determination of thescaled optical thickness of clouds from reflected solar radiation measurements[J]. Journal of the Atmospheric Sciences, 1987, 44(13): 1734-1751.

引用该论文

Li Shu,Sun Xiaobing,Ti Rufang,Huang Honglian,Chen Zhenting,Qiao Yanli. Influence of Scattering Model and Effective Particle Radius on Cirrus Cloud Optical Thickness Retrieval[J]. Acta Optica Sinica, 2018, 38(7): 0701001

李树,孙晓兵,提汝芳,黄红莲,陈震霆,乔延利. 散射模型和有效粒子半径对卷云光学厚度反演的影响[J]. 光学学报, 2018, 38(7): 0701001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF