首页 > 论文 > 光学学报 > 38卷 > 7期(pp:711002--1)

基于Nelder-Mead单纯形法的逆合成孔径激光雷达联合补偿成像算法

Jointly Compensated Imaging Algorithm of Inverse Synthetic Aperture Lidar Based on Nelder-Mead Simplex Method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

逆合成孔径激光雷达(ISAL)的调制信号具有高频率、大带宽的特性,使传统逆合成孔径雷达的“一步一停”模型不再适用。通过建立精确的ISAL成像模型,分析了ISAL成像过程中存在的平动误差、转动误差和模型误差。针对传统ISAL采用平动、转动分离补偿时,由于平动误差补偿存在残余误差而影响转动误差补偿的问题,因此提出基于Nelder-Mead单纯形法和拟牛顿法的联合补偿成像算法。该算法首先采用Nelder-Mead单纯形法对目标运动参数进行优化迭代搜索,将得到的优化解作为运动补偿项对三类误差进行全局补偿,然后利用拟牛顿法补偿残余误差。仿真实验结果表明,与传统分离补偿算法相比,本文算法可以精确估计目标的运动参数,获得聚焦良好的高分辨率ISAL二维图像。

Abstract

The modulation signal of inverse synthetic aperture lidar(ISAL) has the characteristics of high frequency and wide bandwidth, making traditional “stop and go” model of inverse synthetic aperture radar unavailable. By establishing accurate imaging model for ISAL, translational error, rotational error, and model error existed in ISAL image formation process are analyzed. When applying translational compensation and rotational compensation separately to traditional ISAL, the residual error existed in translational motion compensation influences the precision of subsequent rotational motion compensation. Jointly compensated imaging algorithm based on the Nelder-Mead simplex method and the quasi-Newton method is proposed. The proposed algorithm iteratively searches for motion parameters of the target based on the Nelder-Mead simplex method, the obtained optimal solution is used as the motion compensation term to eliminate three kinds of errors globally. Then the quasi-Newton method is applied for removing the residual error. Simulation results show that compared with the traditional separate compensation algorithm, the proposed algorithm can estimate motion parameters of target accurately and obtain a better quality of ISAL image.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN958

DOI:10.3788/aos201838.0711002

所属栏目:成像系统

收稿日期:2017-11-24

修改稿日期:2018-01-29

网络出版日期:--

作者单位    点击查看

刘盛捷:中国科学院自适应光学重点实验室, 四川 成都 610209中国科学院光电技术研究所, 四川 成都 610209中国科学院大学, 北京100049
付翰初:中国科学院自适应光学重点实验室, 四川 成都 610209中国科学院光电技术研究所, 四川 成都 610209中国科学院大学, 北京100049
魏凯:中国科学院自适应光学重点实验室, 四川 成都 610209中国科学院光电技术研究所, 四川 成都 610209
张雨东:中国科学院自适应光学重点实验室, 四川 成都 610209中国科学院光电技术研究所, 四川 成都 610209

联系人作者:张雨东(ydzhang@ioe.ac.cn)

备注:刘盛捷(1993-),男,硕士研究生,主要从事激光雷达成像技术方面的研究。E-mail: liushengjie_93@163.com

【1】Beck S, Buck J, Buell W, et al. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing[J]. Applied Optics, 2005, 44(35):7621-7629.

【2】Bashkansky M, Lucke R, Funk E, et al. Two-dimensional synthetic aperture imaging in the optical domain[J]. Optics Letters, 2002, 27(22): 1983-1985.

【3】Berizzi F, Corsini G. Autofocusing of inverse synthetic aperture radar images using contrast optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 1185-1191.

【4】He J, Zhang Q, Yang X Y, et al. Imaging algorithm for inverse synthetic aperture imaging LADAR[J]. Infrared and Laser Engineering, 2012, 41(4): 1094-1100.
何劲, 张群, 杨小优, 等. 逆合成孔径成像激光雷达成像算法[J]. 红外与激光工程, 2012, 41(4): 1094-1100.

【5】Ruan H, Wu Y H, Ye W, et al. Echo signal characteristics of inverse synthetic aperture ladar[J]. Laser and Infrared, 2013, 43(4): 385-390.
阮航, 吴彦鸿, 叶伟, 等. 逆合成孔径激光雷达回波信号特征分析[J]. 激光与红外, 2013, 43(4): 385-390.

【6】Ruan H, Wu Y H, Ye W, et al. Algorithm ofphase error compensation for inverse synthetic aperture ladar [J]. Laser & Optoelectronics Progress, 2013, 50(10): 102801.
阮航, 吴彦鸿, 叶伟, 等. 逆合成孔径激光雷达相位误差补偿算法[J]. 激光与光电子学进展, 2013, 50(10): 102801.

【7】Guo L, Xing M D, Zeng X D, et al. Inverse synthetic aperture lidar imaging of indoor real data[J]. Infrared and Laser Engineering, 2011, 40(4): 637-642.
郭亮, 邢孟道, 曾晓东, 等. 室内实测数据的逆合成孔径激光雷达成像[J]. 红外与激光工程, 2011, 40(4): 637-642.

【8】Ruan H, Wu Y H, Ye W. Inversesynthetic aperture ladar imaging algorithm for maneuvering target based on FRFT-CLEAN[J]. Journal of Electronics and Information Technology, 2013, 35(7): 1540-1546.
阮航, 吴彦鸿, 叶伟. 基于FRFT-CLEAN的机动目标逆合成孔径激光雷达成像算法[J]. 电子与信息学报, 2013, 35(7): 1540-1546.

【9】Wang H Y, Ruan H, Wu Y H. Fastazimuth imaging algorithm of inverse synthetic aperture ladar for maneuvering targets [J]. Acta Photonica Sinica, 2015, 44(2): 118-123.
王宏艳, 阮航, 吴彦鸿. 机动目标逆合成孔径激光雷达方位成像快速算法[J]. 光子学报, 2015, 44(2): 118-123.

【10】Zang B, Zhang L, Tang Y, et al. Novel imaging method using compressed sensing for the inverse synthetic aperture imaging ladar[J]. Journal of Xidian University, 2010, 37(6): 1027-1032.
臧博, 张磊, 唐禹, 等. 利用压缩感知的逆合成孔径激光雷达成像新方法[J]. 西安电子科技大学学报(自然科学版), 2010, 37(6): 1027-1032.

【11】Ren X, Sun X. An algorithm for inverse synthetic aperture imaging lidar based on sparse signal representation[J]. Laser Physics, 2014, 24(12): 125007.

【12】Xu G, Xing M, Yang L, et al. Joint approach of translational and rotational phase error corrections for high-resolution inverse synthetic aperture radar imaging using minimum-entropy[J]. Iet Radar Sonarand Navigation, 2016, 10(3): 586-594.

【13】Bao Z, Xing M D, Wang T. Radarimaging technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 25-28.
保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 25-28.

【14】Wang J, Liu X. Global range alignment for ISAR[J]. IEEE Transactions on Aerospaceand Electronic Systems, 2007, 43(3): 1070-1075.

【15】Xi L, Liu G, Ni J. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospaceand Electronic Systems, 2002, 35(4): 1240-1252.

【16】Chong E K P, Z·ak S H.An introduction to optimization[M]. 3rd ed. New Jersey: Wiley Press, 2011: 273-298.

【17】Griva I, Nash S G, Sofer A. Linear and nonlinear optimization[M]. 2nd ed. SIAM Press, 2009: 381-385.

【18】Sheng J, Xing M, Zhang L, et al. ISARcross-range scaling by using sharpness maximization[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 165-169.

引用该论文

Liu Shengjie,Fu Hanchu,Wei Kai,Zhang Yudong. Jointly Compensated Imaging Algorithm of Inverse Synthetic Aperture Lidar Based on Nelder-Mead Simplex Method[J]. Acta Optica Sinica, 2018, 38(7): 0711002

刘盛捷,付翰初,魏凯,张雨东. 基于Nelder-Mead单纯形法的逆合成孔径激光雷达联合补偿成像算法[J]. 光学学报, 2018, 38(7): 0711002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF