首页 > 论文 > 光学学报 > 38卷 > 7期(pp:716001--1)

基于石墨烯-金属混合结构的可调超材料吸波体设计

Design of Tunable Metamaterial Absorber Based on Graphene-Metal Hybrid Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用石墨烯与金属相结合的方法提出了一种新型超材料吸波体结构,通过改变外加偏置电压来改变石墨烯的费米能级,在微波段分别实现了单频和宽频的振幅可调性,并阐述了其电磁吸波及振幅可调的机理。对单一频段下的超材料结构进行了模拟仿真,结果表明,当结构参数不变时,吸波体的吸收强度随石墨烯费米能级的增加而不断减小,最大调制深度达到了58.6%。当石墨烯费米能级为0 eV时,吸波体的中心频率随结构参数的改变而改变。基于多吸收峰叠加扩展带宽的原理,利用不同尺寸单元的排列实现了宽频吸波的特性,并通过仿真模拟证明了该宽频吸波体具有振幅可调的性质。

Abstract

A novel metamaterial absorber based on a graphene-metal hybrid structure is proposed. The amplitude tunability at single frequency and broadband frequency within the microwave domain is realized via the change of graphene Fermi level by altering the applied voltage. The mechanisms of absorption and amplitude tunability of electromagnetic field are illustrated. The numerical simulation of this metamaterial structure under single frequency band is made. The results show that, when the structural parameters are fixed, the absorption intensity of absorber decreases with the increase of graphene Femi level and the maximum modulation depth reaches 58.6%. When the graphene Fermi level is 0 eV, the center frequency changes with the structural parameters. An array composed of unit structures with different sizes is used to realize the characteristic of the broadband wave absorption based on the multi-absorption-peak superimposed expansion bandwidth principle. The property of amplitude tunability possessed by this broadband absorber is confirmed by numerical simulations.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O441.4

DOI:10.3788/aos201838.0716001

所属栏目:材料

基金项目:国家自然科学基金(11474037,11474041)

收稿日期:2017-12-26

修改稿日期:2018-02-27

网络出版日期:--

作者单位    点击查看

王越:长春理工大学光电工程学院, 吉林 长春 130022
冷雁冰:长春理工大学光电工程学院, 吉林 长春 130022
董连和:长春理工大学光电工程学院, 吉林 长春 130022
王丽:长春理工大学光电工程学院, 吉林 长春 130022
刘顺瑞:长春理工大学光电工程学院, 吉林 长春 130022
王君:长春理工大学光电工程学院, 吉林 长春 130022
孙艳军:长春理工大学光电工程学院, 吉林 长春 130022

联系人作者:董连和(custdong@163.com)

备注:王越(1995-),男,硕士研究生,主要从事先进光学系统设计与制造方面的研究。E-mail: 861910443@qq.com

【1】Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

【2】Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

【3】Wu D, Liu Y, Li R, et al. Infrared perfect ultra-narrow band absorber as plasmonic sensor[J]. Nanoscale Research Letters, 2016, 11(1): 483.

【4】Karaaslan M, Bamanc M, nal E, et al. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications[J]. Optics Communications, 2017, 392: 31-38.

【5】Astorino M D, Frezza F, Tedeschi N. Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime[J]. Journal of Applied Physics, 2017, 121(6): 063103.

【6】Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7): 2342-2348.

【7】Hao J, Zhou L, Qiu M. Nearly total absorption of light and heat generation by plasmonic metamaterials[J]. Physical Review B, 2011, 83(16): 165107.

【8】Wang B X, Zhai X, Wang G Z, et al. A novel dual-band terahertz metamaterial absorber for a sensor application[J]. Journal of Applied Physics, 2015, 117(1): 014504.

【9】Gu C, Qu S B, Pei Z B, et al. Multiband terahertz metamaterial absorber[J]. Chinese Physics B, 2011, 20(1): 017801.

【10】Wang B X, Wang L L, Wang G Z, et al. A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber[J]. Applied Physics A, 2014, 115(4): 1187-1192.

【11】Xu N, Chen J, Wang J, et al. Dispersion HIE-FDTD method for simulating graphene-based absorber[J]. IET Microwaves, Antennas & Propagation, 2017, 11(1): 92-97.

【12】Zhang Y, Feng Y, Zhu B, et al. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency[J]. Optics Express, 2014, 22(19): 22743-22752.

【13】Chen C, Yang S Y, Yu J, et al. Numerical study on tunable perfect absorption in square graphene-dielectric arrays at near-infrared wavelengths[J]. Materials & Design, 2017, 128: 157-165.

【14】Parvaz R, Karami H. Far-infrared multi-resonant graphene-based metamaterial absorber[J]. Optics Communications, 2017, 396: 267-274.

【15】Fallahi A, Perruisseau-Carrier J. Design of tunable biperiodic graphene metasurfaces[J]. Physical Review B, 2012, 86(19): 195408.

【16】Huang X, Hu Z, Liu P. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction[J]. AIP Advances, 2014, 4(11): 117103.

【17】Balci O, Polat E O, Kakenov N, et al. Graphene-enabled electrically switchable radar-absorbing surfaces[J]. Nature Communications, 2015, 6: 6628.

【18】Yi D, Wei X C, Xu Y L. Tunable microwave absorber based on patterned graphene[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(8): 2819-2826.

【19】Ren L, Zhang Q, Yao J, et al. Terahertz and infrared spectroscopy of gated large-area graphene[J]. Nano Letters, 2012, 12(7): 3711-3715.

【20】Zou T B, Hu F R, Xiao J, et al. Design of a polarization-insensitive and broadband terahertz absorber using metamaterials[J]. Acta Physica Sinica, 2014, 63(17): 178103.
邹涛波, 胡放荣, 肖靖, 等. 基于超材料的偏振不敏感太赫兹宽带吸波体设计[J]. 物理学报, 2014, 63(17): 178103.

引用该论文

Wang Yue,Leng Yanbing,Dong Lianhe,Wang Li,Liu Shunrui,Wang Jun,Sun Yanjun. Design of Tunable Metamaterial Absorber Based on Graphene-Metal Hybrid Structure[J]. Acta Optica Sinica, 2018, 38(7): 0716001

王越,冷雁冰,董连和,王丽,刘顺瑞,王君,孙艳军. 基于石墨烯-金属混合结构的可调超材料吸波体设计[J]. 光学学报, 2018, 38(7): 0716001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF