首页 > 论文 > 光学学报 > 38卷 > 7期(pp:731001--1)

以表面修饰铯掺杂ZnO纳米柱阵列为电子传输层的太阳能电池

Solar Cells with Surface Modified Cs-Doped ZnO Nanorod Array as Electron Transporting Layer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过化学水浴法生长了铯掺杂ZnO纳米柱阵列(CZO-NRA),将其作为电子传输层(ETL),利用乙醇胺与二甲氧基乙醇共混溶液对CZO-NRA进行表面修饰,制备了倒置聚合物太阳能电池。研究结果表明,适量的铯掺杂提高了纳米柱的c轴择优取向结晶度,减少了ETL中由氧空位和锌填隙原子引起的深能级缺陷,减小了器件的串联电阻,增大了器件的短路电流与填充因子。表面修饰减少了CZO-NRA的表面缺陷,减小了ETL与有源层的接触电阻,抑制了界面载流子复合。与未掺杂的器件相比,表面修饰CZO-NRA器件的能量转换效率由1.27%提高至2.89%。

Abstract

The Cs-doped ZnO nanorod array (CZO-NRA) is fabricated by using the chemical bath deposition technique, which is used as the electron transporting layer (ETL). The mixed solution of ethanolamine and 2-methoxyethanol is used to modify the surface of CZO-NRA, and an inverted polymer solar cell (IPSC) is fabricated. The research results show that, the moderate Cs-doping increases the preferred orientation degree of crystallinity along the c-axis for the nanorod, decreases the deep level defect in ETL induced by the oxygen vacancies and the interstitial Zn atoms, decreases the series resistance of devices, and increases the short-circuit current and the filling factor of devices. The surface modification reduces the surface defects, decreases the contact resistance between ETL and the active layer, and suppresses the interfacial carrier recombination. Compared with that of the undoped devices, the power conversion efficiency of the surface-modified CZO-NRA devices is increased from 1.27% to 2.89%.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TM914.4

DOI:10.3788/aos201838.0731001

所属栏目:薄膜

基金项目:国家自然科学基金(61177025)、吉林省科学技术发展计划项目(20130102009JC)、吉林师范大学功能材料物理与化学教育部重点实验室资助课题(2015004)、吉林大学大学生创新创业训练计划(2016B51428)

收稿日期:2018-01-08

修改稿日期:2018-02-05

网络出版日期:--

作者单位    点击查看

李雪:吉林大学电子科学与工程学院集成光电子学国家重点联合实验室, 吉林 长春 130012
赵宇涵:吉林大学电子科学与工程学院集成光电子学国家重点联合实验室, 吉林 长春 130012
彭辉:吉林大学电子科学与工程学院集成光电子学国家重点联合实验室, 吉林 长春 130012
张健:吉林大学电子科学与工程学院集成光电子学国家重点联合实验室, 吉林 长春 130012
李传南:吉林大学电子科学与工程学院集成光电子学国家重点联合实验室, 吉林 长春 130012
汪津:吉林师范大学功能材料物理与化学教育部重点实验室, 吉林 四平 136000

联系人作者:李传南(licn@jlu.edu.cn)

备注:李雪(1991-),女,硕士研究生,主要从事聚合物太阳能电池方面的研究。E-mail: jlulixue@163.com

【1】Blom P W M, Mihailetchi V D, Koster L J A, et al. Device physics of polymer: Fullerene bulk heterojunction solar cells[J]. Advanced Materials, 2007, 19(12): 1551-1566.

【2】Dou L, You J, Hong Z, et al. 25th anniversary article: A decade of organic/polymeric photovoltaic research[J]. Advanced Materials, 2013, 25(46): 6642-6671.

【3】He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nature Photonics, 2012, 6(9): 591-595.

【4】Tian Z H, Si C F, Qu W S, et al. High-performance organic photovoltaic using solution-processed graphene oxide[J]. Acta Optica Sinica, 2017, 37(4): 0416001.
田正浩, 司长峰, 屈文山, 等. 基于溶液加工氧化石墨烯的高性能有机太阳能电池[J]. 光学学报, 2017, 37(4): 0416001.

【5】Li X, Wen S S, Yao R H, et al. Analysis of optical performance on polymer solar cell on transfer matrix method[J]. Acta Optica Sinica, 2012, 32(6): 0631002.
李祥, 文尚胜, 姚日晖, 等. 基于传输矩阵法的聚合物太阳能电池光学性能分析[J]. 光学学报, 2012, 32(6): 0631002.

【6】Yang S P, Zhao Y X, Han L J, et al. High-efficiency polymer soalr cells without optical spacer[J]. Acta Optica Sinica, 2012, 32(5): 0531001.
杨少鹏, 赵艳新, 韩凌洁, 等. 免光学间隔层的高效聚合物太阳能电池[J]. 光学学报, 2012, 32(5): 0531001.

【7】Xiao X, Xie S W, Zhang Z Y, et al. Confinent and trapping of light in organic solar cells[J]. Laser & Optoelectronics Progress, 2013, 50(5): 050006.
肖啸, 谢世伟, 张志友, 等. 光在有机太阳能电池中的约束与捕获[J]. 激光与光电子学进展, 2013, 50(5): 050006.

【8】Xiao X, Xu D F, Xiao Z G, et al. Study on enhancement effects of a grating electrode in organic solar cells[J]. Acta Optica Sinica, 2015, 35(s1): s116001.
肖啸, 许德富, 肖志刚, 等. 光栅电极在有机太阳能电池中的增强效应研究[J]. 光学学报, 2015, 35(s1): s116001.

【9】White M S, Olson D C, Shaheen S E, et al. Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer[J]. Applied Physics Letters, 2006, 89(14): 143517.

【10】Yang T, Cai W, Qin D, et al. Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure[J]. The Journal of Physical Chemistry C, 2010, 114(14): 6849-6853.

【11】Olson D C, Piris J, Collins R T, et al. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites[J]. Thin Solid Films, 2006, 496(1): 26-29.

【12】Ho P Y, Thiyagu S, Kao S H, et al. ZnO nanorod arrays for various low-bandgap polymers in inverted organic solar cells[J]. Nanoscale, 2013, 6(1): 466-71.

【13】Guo M, Diao P, Cai S. Hydrothermal growth of well-aligned ZnO nanorodarrays: Dependence of morphology and alignment ordering upon preparing conditions[J]. Journal of Solid State Chemistry, 2005, 178(6): 1864-1873.

【14】Hoppe H, Shokhovets S, Gobsch G. Inverse relation between photocurrent and absorption layer thickness in polymer solar cells[J]. Physica Status Solidi: Rapid Research Letters, 2010, 1(1): R40-R42.

【15】Sabri N S, Yap C C, Yahaya M, et al. Solution-dispersed CuO nanoparticles as anode buffer layer in inverted type hybrid organic solar cells[J]. Physica Status Solidi:Applications and Materials Science, 2016, 214(1): 1600418.

【16】Thitima R, Patcharee C, Takashi S, et al. Efficient electron transfers in ZnO nanorod arrays with N719 dye for hybrid solar cells[J]. Solid-State Electronics, 2009, 53(2): 176-180.

【17】Hames Y, Alpaslan Z, Kosemen A, et al. Electrochemically grown ZnO nanorods for hybrid solar cell applications[J]. Solar Energy, 2010, 84(3): 426-431.

【18】Wang M, Li Y, Huang H, et al. Thickness dependence of the MoO3 blocking layers on ZnO nanorod-inverted organic photovoltaic devices[J]. Applied Physics Letters, 2011, 98(10): 103305.

【19】Das N C, Biswas S, Sokol P E. The photovoltaic performance of ZnO nanorods in bulk heterojunction solar cells[J]. Journal of Renewable & Sustainable Energy, 2011, 3(3): 15.

【20】Bekci D R, Karsli A, Cakir A C, et al. Comparison of ZnO interlayers in inverted bulk heterojunction solar cells[J]. Applied Energy, 2012, 96(8): 417-421.

【21】Tong F, Kim K, Martinez D, et al. Flexible organic/inorganic hybrid solar cells based on conjugated polymer and ZnO nanorod array[J]. Semiconductor Science & Technology, 2012, 27(10): 105005.

【22】Gonzalez-Valls I, Angmo D, Gevorgyan S A, et al. Comparison of two types of vertically aligned ZnO NRs for highly efficient polymer solar cells[J]. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(4): 272-280.

【23】Ginting R T, Chi C Y, Yahaya M, et al. Influence of poly(2-methoxy-5-(2’-ethyl)-hexyloxy-p-phenylene vinylene):(6,6)-phenyl C61 butyric acid methyl ester blend ratio on the performance of inverted type organic solar cells based on Eosin-Y-coated ZnO nanorod arrays[J]. Thin Solid Films, 2013, 536: 286-290.

【24】Yuan Z, Fu M, Huang W. Air-stable inverted ZnO nanorod arrays/polymerhybrid solar cell[J].Synthetic Metals, 2013, 185/186: 133-136.

【25】Sung Y M, Hsu F C, Chen Y F. Improved charge transport in inverted polymer solar cells using surface engineered ZnO-nanorod array as an electron transport layer[J]. Solar Energy Materials & Solar Cells, 2014, 125: 239-247.

【26】Yun S, Lee J, Yang J, et al. Hydrothermal synthesis of Al-doped ZnO nanorod arrays on Si substrate[J]. Physica B: Condensed Matter, 2010, 405(1): 413-419.

【27】Yang J, Lee J, Im K. Influence of Sn-doping in hydrothermal methods on the optical property of the ZnO nanorods[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 42(1): 51-56.

【28】Wang H, Baek S, Song J, et al. Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays[J]. Nanotechnology, 2008, 19(7): 075607.

【29】Ishizumi A, Kanemitsu Y. Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method[J]. Applied Physics Letters, 2005, 6(25): 253106.

【30】Fang T H, Kang S H. Preparation and characterization of Mg-doped ZnO nanorods[J]. Journal of Alloys & Compounds, 2010, 492(1/2): 536-542.

【31】Chen C S, Liu T G, Lin L W, et al. Preparation and optical property of Mn-doped ZnO nanorods[J]. Advanced Materials Research, 2011, 189/190/191/192/193: 643-647.

【32】Mirabbaszadeh K, Ahmadi M, Khosravi M, et al. Hydrothermal synthesis of vertically aligned cesium-doped ZnO nanorods for solar cell applications[J]. Journal of Inorganic & Organometallic Polymers & Materials, 2013, 23(6): 1219-1225.

【33】Fang T H, Kang S H. Optical and physical characteristics of In-doped ZnO nanorods[J]. Current Applied Physics, 2010, 10(4): 1076-1086.

【34】Lin Y Y, Lee Y Y, Chang L, et al. The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells[J]. Applied Physics Letters, 2009, 94(6): 063308.

【35】Lee B R, Jung E D, Nam Y S, et al. Amine-based polar solvent treatment for highly efficient inverted polymer solar cells[J]. Advanced Materials, 2014, 26(3): 494-500.

【36】Sekine N, Chou C H, Kwan W L, et al. ZnO nano-ridge structure and its application in inverted polymer solar cell[J]. Organic Electronics, 2009, 10(8): 1473-1477.

【37】Thangavel R, Moirangthem R S,Lee W S, et al. Cesium doped and undoped ZnO nanocrystalline thin films: A comparative study of structural and micro-Raman investigation of optical phonons[J]. Journal of Raman Spectroscopy, 2010, 41(12): 1304-1310.

【38】Kim H P, Yusoff A R, Lee H J, et al. Effect of ZnO∶Cs2CO3 on the performance of organic photovoltaics[J]. Nanoscale Research Letters, 2014, 9(1): 323.

【39】Cho K S, Lee E K, Joo W J, et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes[J]. Nature Photonics, 2009, 3(6): 341-345.

【40】Bo R L, Jung E D, Ji S P, et al. Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer[J]. Nature Communications, 2014, 5: 4840.

【41】Jang I, Kim J, Chang J P, et al. Study of ethanolamine surface treatment on the metal-oxide electron transport layer in inverted InP quantum dot light-emitting diodes[J]. Electronic Materials Letters, 2015, 11(6): 1066-1071.

【42】Yip H L, Hau S K, Baek N S, et al. Polymer solar cells that use self-assembled-monolayer modified ZnO/metals as cathodes[J]. Advanced Materials, 2008, 20(12): 2376-2382.

【43】Ye E H, Mi Y J, Park J, et al. Inverted type polymer solar cells with self-assembled monolayer treated ZnO[J]. Journal of Physical Chemistry C, 2013, 117(6): 2646-2652.

引用该论文

Li Xue,Zhao Yuhan,Peng Hui,Zhang Jian,Li Chuannan,Wang Jin. Solar Cells with Surface Modified Cs-Doped ZnO Nanorod Array as Electron Transporting Layer[J]. Acta Optica Sinica, 2018, 38(7): 0731001

李雪,赵宇涵,彭辉,张健,李传南,汪津. 以表面修饰铯掺杂ZnO纳米柱阵列为电子传输层的太阳能电池[J]. 光学学报, 2018, 38(7): 0731001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF