首页 > 论文 > 中国激光 > 45卷 > 7期(pp:704001--1)

基于局部信噪比的微小损伤自适应检测技术研究

Micro-Size Damage Adaptive Detection Technology Based on Local Signal-to-Noise Ratio

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

大型高功率激光驱动装置中, 激光能量密度及系统运行速度主要受终端光学元件损伤增长的限制。为高效、精确地检测元件的损伤状态, 提出了一种基于局部信噪比的自适应差异窗过滤算法。该算法通过设计一种作用在像素点上的窗函数, 以关联邻域点的像素值强弱完成目标点或背景点的判断, 从而完成种子图像的阈值化, 最后通过对种子图像区域生长完成损伤分割。为验证算法的有效性, 搭建了在线检测模拟平台以获取损伤样品图像, 并使用该算法对图像进行处理。结果表明: 对直径50 μm以上的损伤点, 算法的平均识别率在99%以上, 达到了高功率激光驱动系统对微小损伤检测的精度要求。因其不需要依据经验设定种子图像的阈值, 与现有局部信噪比算法相比具有更高的自动化程度。

Abstract

In large-scale high-power laser devices, the laser energy density and the system operating speed are mainly limited by the damage growth of the terminal optical element. An adaptive differential window filtering method based on local signal-to-noise ratio is proposed in order to detect the damage state of the element efficiently and accurately. By designing a window function which acts on pixels, the algorithm can judge the target point or background point according to the pixel value and the values of its neighborhood point. And then the segmentation of the seed image is completed. Finally, the damage segmentation is completed by the growth of the seed region. In order to verify the effectiveness of the algorithm, we built an on-line detection simulation platform to obtain the damaged sample image, and the new method mentioned above is used to process the image. The results show that the average recognition rate of the method is above 99% for the damage points with the diameter above 50 μm, which meets the requirement of high-power laser drive system for the detection of small damage. Because the algorithm does not require setting the threshold of the seed image based on experience, it is more automated than the existing local signal-to-noise ratio algorithm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP274

DOI:10.3788/cjl201845.0704001

所属栏目:测量与计量

基金项目:国家自然科学基金(11774364)

收稿日期:2017-11-27

修改稿日期:2018-01-10

网络出版日期:--

作者单位    点击查看

唐如欲:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800中国科学院大学, 北京 100049
刘德安:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
朱健强:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800

联系人作者:刘德安(liudean@siom.ac.cn)

备注:唐如欲(1992-), 女, 硕士研究生, 主要从事高功率激光驱动装置中终端光学元件损伤检测方面的研究。E-mail: tangruyu@siom.ac.cn

【1】Carr C W, Cross D A, Liao Z M, et al. The stochastic nature of growth of laser-induced damage[C]. Proceedings of SPIE, 2015, 9532: 953212.

【2】Liao Z M,Nostrand M, Whitman P A, et al. Analysis of optics damage growth at the National Ignition Facility[C]. Proceedings of SPIE, 2015, 9632: 963217.

【3】Conder A, Alger T, Azevedo S, et al. Final optics damage inspection (FODI) for the National Ignition Facility[C]. Proceedings of SPIE, 2007, 6720: 672010.

【4】Liao Z M, Nostrand M, Carr W, et al. Modeling of laser-induced damage and optic usage at the National Ignition Facility[C]. Proceedings of SPIE, 2016, 9983: 998304.

【5】Denis V, Beau V, Lacampagne L, et al. The Laser Megajoule Facility: laser performances and comparison with computational simulation[C]. Proceedings of SPIE, 2018, 10525: 1052503.

【6】Mangote B, Tovena-Pecault I, Néauport J. Study of the LIDT degradation of optical components by intentional organic contamination[C]. Proceedings of SPIE, 2012, 8530: 853025.

【7】Spaeth M L, Wegner P J, Suratwala T I, et al. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold[J]. Fusion Science and Technology, 2016, 69(1): 265-294.

【8】Spaeth M L, Manes K R, Widmayer C C, et al. The National Ignition Facility wavefront requirements and optical architecture[J]. Optical Engineering, 2004, 43(12): 25-42.

【9】Shaw M J, Williams W H, House R K, et al. Laser performance operations model[J]. Optical Engineering, 2004, 43(12): 2885-2895.

【10】Feng B. Research on final optics damage online inspection technologies for ICF system[D]. Harbin: Harbin Institute of Technology, 2014:8-10.
冯博. 惯性约束聚变终端光学元件损伤在线检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 8-10.

【11】Peng Z T. Study on online laser damage detection of optical components in high power laser complex optic components[D]. Mianyang: China Academy of Engineering Physics, 2011: 12-74.
彭志涛. 强激光复杂光机组件光学元件激光损伤在线检测技术研究[D]. 绵阳: 中国工程物理研究院, 2011: 12-74.

【12】Lü X D. Research on defect detection and classification in ICF based on machine learning[D]. Harbin: Harbin Institute of Technology, 2015: 6-7.
吕旭冬. 基于机器学习的终端光学元件损伤识别及分类研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 6-7.

【13】Kegelmeyer L M, Fong P W, Glenn S M, et al. Local area signal-to-noise ratio (LASNR) algorithm for image segmentation[C]. Proceedings of SPIE, 2007, 6696: 66962H.

【14】Carr A, Kegelmeyer L, Liao Z M, et al. Defect classification using machine learning[C]. Proceedings of SPIE, 2008, 7132: 713210.

【15】Verbeek P W,Vrooman H A, Vliet L J V. Low-level image processing by max-min filters[J]. Signal Processing, 1988, 15(3): 249-258.

【16】Bischof L, Adams R. Seeded region growing[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1994, 16(6): 641-647.

引用该论文

Tang Ruyu,Liu Dean,Zhu Jianqiang. Micro-Size Damage Adaptive Detection Technology Based on Local Signal-to-Noise Ratio[J]. Chinese Journal of Lasers, 2018, 45(7): 0704001

唐如欲,刘德安,朱健强. 基于局部信噪比的微小损伤自适应检测技术研究[J]. 中国激光, 2018, 45(7): 0704001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF