首页 > 论文 > 激光与光电子学进展 > 55卷 > 7期(pp:71901--1)

数码相机畸变模型的相互转换方法

Conversion Method of Digital Camera Distortion Model

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

数码相机的非线性光学畸变补偿,主要有用于摄影测量领域的像方畸变模型和用于计算机视觉领域的物方畸变模型两种方式。针对两种畸变模型难以通用的问题,提出了一种像方和物方的畸变模型相互转换方法。利用已知畸变模型系数及内方位元素生成原始像点与理论像点的对应关系,构成虚拟观测值。再利用虚拟观测值对内方位元素及待转换畸变模型系数进行整体最小二乘平差解算。最后,利用三维控制场检校结果对转换结果进行精度评价。实验结果表明,当相机检校总体中误差小于0.3 pixel时,两种畸变模型转换前后像点畸变量差值小于0.5 pixel,可以满足对子像素转换精度的要求。

Abstract

There are two kinds of nonlinear optical distortion compensation methods for digital cameras. One is the image distortion model used in the photogrammetry, and the other is the object distortion model used in the computer vision. Aiming at the problem that the two kinds of distortion models are difficult to achieve generality, we propose a method for transformation of image distortion and objects distortion. First, the transfer relationship between the original image point and the theoretical image point, generated from the known distortion model coefficients and the intrinsic parameters, is used as the virtual measurements. Then, the intrinsic parameters and distortion model coefficients are computed according to the virtual measurements by the least square method. Finally, the three-dimensional (3D) control field calibration result is used to evaluate the precision of the conversion results. The experimental results show that when the camera calibration root mean square error is less than 0.3 pixel, the mutual conversion error of the two types of distortion models is less than 0.5 pixel, which can meet the conversion precision of the sub-pixel.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:P237

DOI:10.3788/lop55.071901

所属栏目:非线性光学

基金项目:中央高校基本科研业务费专项基金(310826161011,310826173101)、航空遥感技术国家测绘地理信息局重点实验室开放基金(2015B10)

收稿日期:2017-11-28

修改稿日期:2017-12-28

网络出版日期:--

作者单位    点击查看

任超锋:长安大学地质工程与测绘学院, 陕西 西安 710054西部矿产资源与地质工程教育部重点实验室, 陕西 西安 710054
张楠:陕西省计量科学研究院, 陕西 西安 710054

联系人作者:任超锋(ren_cf@163.com)

备注:任超锋(1984—),男,博士,讲师,主要从事低空摄影测量三维自动重建、组合相机数据预处理方面的研究。E-mail: ren_cf@163.com

【1】Zhao S, Li X J, Liu T, et al. Camera self-calibration method based on large scale aerial images coplanarity constraints[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 98-106.
赵爽, 李学军, 刘涛, 等. 基于大比例尺航空影像共面约束条件的相机自检校方法[J]. 测绘学报, 2017, 46(1): 98-106.

【2】Yang B W, Guo X S. Overview of nonlinear distortion correction of camera lens[J]. Journal of Image and Graphics, 2005, 10(3): 269-274.
杨必武, 郭晓松. 摄像机镜头非线性畸变校正方法综述[J]. 中国图象图形学报, 2005, 10(3): 269-274.

【3】Brown D C. Close-range camera calibration[J]. Photogrammetric Engineering, 1971, 37(8): 855-866.

【4】Melen T. Geometrical modelling and calibration of video cameras for underwater navigation[J]. Psychotherapeut, 1994, 60(5): 351-352.

【5】Heikkila J, Silven O. A four-step camera calibration procedure with implicit image correction[C]. IEEE Computer Society Conference, 1997: 1106-1112.

【6】Fraser C S. Digital camera self-calibration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1997, 52(4): 149-159.

【7】Hu H, Liang J, Tang Z Z, et al. Global calibration for muti-camera videogrammetric system with large-scale field-of-view[J]. Optics and Precision Engineering, 2012, 20(2): 369-378.
胡浩, 梁晋, 唐正宗, 等. 大视场多像机视频测量系统的全局标定[J]. 光学 精密工程, 2012, 20(2): 369-378.

【8】Gao Z Y, Gu Y Y, Liu Y H, et al. Self-calibration based on simplified brown non-linear camera model and modified BFGS algorithm[J]. Optics and Precision Engineering, 2017, 25(9): 2532-2540.
高瞻宇, 顾营迎, 刘宇航, 等. 采用简化Brown模型及改进BFGS法的相机自标定[J]. 光学 精密工程, 2017, 25(9): 2532-2540.

【9】Hanning T. A least squares solution for camera distortion parameters[J]. Journal of Mathematical Imaging and Vision, 2013, 45(2): 138-147.

【10】Gao S T, Wu D C, Miao E L. Distortion correcting method when testing large-departure asphere[J]. Chinese Optics, 2017, 10(3): 383-390.
高松涛, 武东城, 苗二龙. 大偏离度非球面检测畸变校正方法[J]. 中国光学, 2017, 10(3): 383-390.

【11】Xie Z X, Chi S K, Wang X M, et al. Calibration method for structure-light auto-scanning measurement system based on coplanarity[J]. Chinese Journal of Lasers, 2016, 43(3): 0308003.
解则晓, 迟书凯, 王晓敏, 等. 基于共面法的结构光自扫描测量系统参数标定方法[J].中国激光, 2016, 43(3): 0308003.

【12】Zou P P, Zhang Z L, Wang P, et al. Binocular camera calibration based on collinear vector and planehomography[J]. Acta Optica Sinica, 2017, 37(11): 1115006.
邹朋朋, 张滋黎, 王平, 等. 基于共线向量与平面单应性的双目相机标定方法[J]. 光学学报, 2017, 37(11): 1115006.

【13】Gui D Z, Lin Z J, Liu Z Q, et al. Mosaic model of compact and wide-angle composite digital camera system for UAV[J]. Infrared and Laser Engineering, 2009, 38(5): 905-909.
桂德竹, 林宗坚, 刘召芹, 等. UAV载特轻小型组合宽角数字相机拼接模型[J]. 红外与激光工程. 2009, 38(5): 905-909.

【14】Liu W, Li X, Ma X, et al. Camera calibration method for close range large field of view camera based on compound target[J]. Infrared and Laser Engineering, 2016, 45(7): 0717005.
刘巍, 李肖, 马鑫, 等. 采用复合式靶标的近景大视场相机标定方法[J]. 红外与激光工程, 2016, 45(7): 0717005.

【15】Zhao M, Zheng X C, Huang Q H, et al. Camera calibration with narrow field of view for deep space[J]. Laser & Optoelectronics Progress, 2017, 54(9): 091502.
赵敏, 郑兴纯, 黄秋红, 等. 深度空间小视角摄像机标定[J]. 激光与光电子学进展, 2017, 54(9): 091502.

【16】Xie Z X, Han Z H, Gao X. Key technologies of monocular vision measurement system with light pen[J]. Chinese Optics, 2013, 6(5): 780-787.
解则晓, 韩振华, 高翔. 光笔式单目视觉测量系统的关键技术[J]. 中国光学, 2013, 6(5): 780-787.

【17】Ren C F. Research on key technologies of DOM generation by aerial video[D]. Wuhan: Wuhan University, 2014.
任超锋. 航空视频影像的正射影像制作关键技术研究[D]. 武汉: 武汉大学, 2014.

引用该论文

Ren Chaofeng,Zhang Nan. Conversion Method of Digital Camera Distortion Model[J]. Laser & Optoelectronics Progress, 2018, 55(7): 071901

任超锋,张楠. 数码相机畸变模型的相互转换方法[J]. 激光与光电子学进展, 2018, 55(7): 071901

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF