首页 > 论文 > 激光与光电子学进展 > 55卷 > 7期(pp:70603--1)

基于平顶光束的水下无线光通信系统的仿真分析

Simulation Analysis of Undersea Wireless Optical Communication System Based on Flat-Topped Beam

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对长距离水下无线光通信系统,采用蒙特卡罗方法研究了水下光束的传输特性。提出采用平顶光束替代传统高斯光束,以延长通信系统的传输距离。通过对比平顶光束和高斯光束在三类清澈海水中的传输特性,基于脉冲位置调制技术,对两种水下无线光通信系统进行实验仿真。结果表明:在相同条件下,高斯光束和平顶光束的水下无线光通信系统的可靠视频传输距离上限分别为268 m和340 m。在清澈海水中,采用平顶光束可以有效延长水下无线光通信系统的通信距离。该结果为长距离水下无线光通信系统设计提供了参考。

Abstract

Using the Monte Carlo method, we investigate the transmission characteristics of light beam through seawater for long-reach undersea wireless optical communication system. The traditional Gaussian beam is replaced with flat-topped beam, which can extend the distance of communication system. Then we compare the transmission characteristics of flat-topped beam and Gaussian beam in three kinds of clear seawater, and simulate the two kinds of underwater wireless optical communication systems based on pulse position modulation. The results show that the upper limit of reliable video transmission distance of undersea wireless optical communication system is 268 m for using Gaussian beam and 340 m for using flat-topped beam under the same condition, respectively. The application of flat-topped beam is viable to extend the communication distance of underwater wireless optical communication system in clear seawater. The results provide a reference for the design of long-reach underwater wireless optical communication systems.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.1

DOI:10.3788/lop55.070603

所属栏目:光纤光学与光通信

收稿日期:2017-12-05

修改稿日期:2017-12-29

网络出版日期:--

作者单位    点击查看

周龙杰:电子科技大学电子科学技术研究院, 四川 成都 611731
周东:电子科技大学电子科学技术研究院, 四川 成都 611731
曾文兵:电子科技大学电子科学技术研究院, 四川 成都 611731

联系人作者:周东(zhoudong@uestc.edu.cn)

备注:周龙杰(1992—),男,硕士研究生,主要从事水下无线光通信方面的研究。E-mail: zlj1018555@sina.com

【1】Zhou F. The study of the key technologies for underwater acoustic spread-spectrum communication[D]. Harbin: Harbin Engineering University, 2012.
周锋. 水声扩频通信关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.

【2】Oubei H M, Duran J R, Janjua B, et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication[J]. Optics Express, 2015, 23(18): 23302-23309.

【3】Kong M, Lü W, Ali T, et al. 10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication[J]. Optics Express, 2017, 25(17): 20829-20834.

【4】Hu S Q, Zhou T H, Chen W B. Performance analysis and simulation of maximum ratio combining in underwater laser communication[J]. Chinese Journal of Lasers, 2016, 43(12): 1206003.
胡思奇, 周田华, 陈卫标. 水下激光通信最大比合并分集接收性能分析及仿真[J]. 中国激光, 2016, 43(12): 1206003.

【5】Han B, Zhao W, Wang W, et al. Modified photon counting communication method for underwater application[J]. Acta Optica Sinica, 2016, 36(8): 0806004.
韩彪, 赵卫, 汪伟, 等. 面向水下应用的改进型光子计数通信方法[J]. 光学学报, 2016, 36(8): 0806004.

【6】Gao Y H. Research of Gaussian beam shaping[D]. Changchun: Changchun University of Science and Technology, 2012.
高瑀含. 高斯光束整形技术研究[D]. 长春: 长春理工大学, 2012.

【7】Mobley C D. Light and water: radiative transfer in natural waters[M]. New York: Academic Press, 1994.

【8】Wang F, Yang Y, Duan Z L, et al. Characteristic analysis of underwater laser signal transmission channel based on visible light[J]. Optical Communication Technology, 2016, 40(3): 26-28.
王菲, 杨祎, 段作梁, 等. 基于可见光的水下激光传输信道的特性分析[J]. 光通信技术, 2016, 40(3): 26-28.

【9】Ding Y. Low-cost underwater wireless optical communication system for small facilities[D]. Hangzhou: Zhejiang University, 2013.
丁阳. 用于小型设备的低成本水下无线光通信装置[D]. 杭州: 浙江大学, 2013.

【10】Cox W C. Simulation, modeling, and design of underwater optical communication systems[D]. Raleigh: North Carolina State University, 2012.

【11】Gabriel C, Khalighi M A, Léon P, et al. Monte-Carlo-Based channel characterization for underwater optical communication systems[J]. IEEE/OSA Journal of Optical Communications and Networking, 2013, 5(1): 1-12.

【12】Hu X H, Hu S Q, Zhou T H, et al. Rapid estimation of the maximum communication distance for an underwater laser communication system[J]. Chinese Journal of Lasers, 2015, 42(8): 0805007.
胡秀寒, 胡思奇, 周田华, 等. 水下激光通信系统最大通信距离的快速估计[J]. 中国激光, 2015, 42(8): 0805007.

【13】Chen K. Research of laser beam shaping based on microlens array[D]. Nanjing: Nanjing University of Science and Technology, 2015.
陈宽. 基于微透镜阵列的激光光束整形技术研究[D]. 南京: 南京理工大学, 2015.

【14】Li J. Research on modulated-carrier underwater wireless laser communications based on analytic Monte Carlo methods[D]. Wuhan: Huazhong University of Science and Technology, 2013.
黎静. 基于解析蒙特卡洛方法的载波调制水下激光通信研究[D]. 武汉: 华中科技大学, 2013.

【15】Du J S, Zhou T H, Chen W B, et al. Performance Analysis of Underwater Optical Communication Based on LDPC and PPM [J]. Laser & Optoelectronics Progress, 2016, 53(12): 120605.
杜劲松, 周田华, 陈卫标, 等. 基于LDPC和PPM的水下光通信性能分析[J]. 激光与光电子学进展, 2016, 53(12): 120605.

【16】Ghassemlooy Z, Popoola W, Rajbhandari S. Opticalwireless communications: system and channel modelling with MATLAB[M]. [S. l.]: Taylor & Francis Inc, 2012.

【17】Ma L H. Study on thesource and channel coding theory and techniques of video communication in error-prone environments [D]. Xi′an: Xidian University, 2006.
马林华. 误码环境下的视频信源信道编码理论与技术研究[D]. 西安: 西安电子科技大学, 2006.

【18】Bi H J, Wang J. The next generation video compression coding standard: H.264/AVC[M]. 2nd edition, Beijing: Beijing People′s Post and Telecommunications Press, 2009.
毕厚杰, 王健. 新一代视频压缩编码标准: H.264/AVC[M]. 第2版, 北京: 人民邮电出版社, 2009.

引用该论文

Zhou Longjie,Zhou Dong,Zeng Wenbing. Simulation Analysis of Undersea Wireless Optical Communication System Based on Flat-Topped Beam[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070603

周龙杰,周东,曾文兵. 基于平顶光束的水下无线光通信系统的仿真分析[J]. 激光与光电子学进展, 2018, 55(7): 070603

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF