首页 > 论文 > 激光与光电子学进展 > 55卷 > 7期(pp:70701--1)

基于并联马赫-曾德尔调制器的锯齿波生成方法

Sawtooth Waveform Generation Based on Two Parallel Mach-Zehnder Modulators

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

介绍了基于微波光子技术的射频锯齿波产生技术的应用背景和技术类型。为克服电子波形生成办法的电子瓶颈,以外调制方法作为技术基础,提出了一种基于并联马赫-曾德尔调制器(MZM)的锯齿波生成的新方法。调整MZM直流偏置电压和射频信号幅度,以满足正交偏置点和调制系数的要求,保证经光电平衡二极管后生成的光电流各频率分量特性符合锯齿波函数分解的傅里叶级数。建立了数学仿真模型,进行了实验验证。引入方均根误差对结果进行衡量,并分析了消光比和电压漂流对输出信号性能的影响。结果表明,所提方案灵活,具有优秀的可扩展性,通过简单操作即可完成波形生成和正负斜率切换。

Abstract

The application background and techniques to generate sawtooth wave based on photonic approaches are introduced. To overcome the electronic bottleneck of electronic waveform generation methods, we propose a novel method to generate sawtooth waveforms by using two parallel Mach-Zehnder modulators (MZMs) based on external modulation. We adjust the voltage of the direct current source and the intensity of the radio frequency source in order to make MZMs to operate under conditions of quadrature transmission point (QTP) and proper modulation index. Thus, the frequency components′characteristics of the photocurrent from optoelectronic balance diode are coincident with the Fourier series of sawtooth. A mathematical model is built, and the scheme is verified experimentally. The root mean square error is used to evaluate the simulated and experimental results. In addition. The influences of the extinction ratio and the drift voltage on the output signal are analyzed. The results show that the proposed system is flexible and has strong scalability. The waveform generation and slope switching can be realized through simple actions.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN24

DOI:10.3788/lop55.070701

所属栏目:傅里叶光学与信号处理

基金项目:国家自然科学基金(61671305)、上海航天技术研究院“八院自主研发项目”

收稿日期:2017-12-13

修改稿日期:2018-01-07

网络出版日期:--

作者单位    点击查看

袁牧野:上海卫星工程研究所, 上海 200240
刘波:上海卫星工程研究所, 上海 200240
王天亮:上海卫星工程研究所, 上海 200240上海航天技术研究院北京研发中心, 北京 100081
徐志康:上海卫星工程研究所, 上海 200240

联系人作者:王天亮(tianliangwang@21cn.com)

备注:袁牧野(1994—),男,硕士研究生,主要从事微波光子学方面的研究。E-mail: yuanmysn@163.com

【1】Capmany J, Novak D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330.

【2】Du J B, Li D J, Ma M, et al. Vibration estimation and imaging of synthetic aperture laser radar based on interference processing[J]. Chinese Journal of Lasers, 2016, 43(9): 0910003.
杜剑波, 李道京, 马萌, 等. 基于干涉处理的机载合成孔径激光雷达振动估计和成像[J]. 中国激光, 2016, 43(9): 0910003.

【3】Feng Y, Jiang H W, Zhang L, et al. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 2017, 44(2): 0201005.
冯衍, 姜华卫, 张磊. 高功率拉曼光纤激光器技术研究进展[J]. 中国激光, 2017, 44(2): 0201005.

【4】Tao S X, Deng X Y, Li J Z, et al. Real-time measurement of light beat-frequency signal with bandwidth of 56.978 GHz[J]. Acta Optica Sinica, 2017, 37(3): 0306004.
陶世兴, 邓向阳, 李建中, 等. 带宽为56.978 GHz光拍频信号实时测量[J]. 光学学报, 2017, 37(3): 0306004.

【5】Zhou D P, Dong Y. Anti-interference of current sensing fiber in all-fiber current sensors[J]. Acta Optica Sinica, 2017, 37(10): 1006002.
周东平, 董毅. 全光纤电流传感器中电流传感光纤的抗干扰研究[J]. 光学学报, 2017, 37(10): 1006002.

【6】Urick V J, Williams K J, McKinney J D. Fundamentals of microwave photonics[M]. Hoboken: John Wiley & Sons, 2015.

【7】Lezekiel S. Microwave photonics: devices and applications[M]. Hoboken: John Wiley & Sons, 2009.

【8】Chou J, Han Y, Jalali B. Adaptive RF-photonic arbitrary waveform generator[J]. IEEE Photonics Technology Letters, 2003, 15(4): 581-583.

【9】Jalali B, Kelkar P, Saxena V. Photonic arbitrary waveform generator[J]. Proceeding of IEEE, 2001: 7268077.

【10】Cundiff S T, Weiner A M. Optical arbitrary waveform generation[J]. Proceeding of IEEE, 2010: 11428470.

【11】Jiang Z, Huang C B, Leaird D E, et al. Optical arbitrary waveform processing of more than 100 spectral comb lines[J]. Nature Photonics, 2007, 1(8): 463-467.

【12】Yao J P. Photonic generation of microwave arbitrary waveforms[J]. Optics Communications, 2011, 284(15): 3723-3736.

【13】McKinney J D, Leaird D E, Weiner A M. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper[J]. Optics Letters, 2002, 27(15): 1345-1347.

【14】Yilmaz T, DePriest C M, Turpin T, et al. Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser[J]. IEEE Photonics Technology Letters, 2002, 14(11): 1608-1610.

【15】Lin I S, McKinney J D, Weiner A M. Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication[J]. IEEE Microwave and Wireless Components Letters, 2005, 15(4): 226-228.

【16】Jiang Z, Leaird D E, Weiner A M. Line-by-line pulse shaping control for optical arbitrary waveform generation[J]. Optics Express, 2005, 13(25): 10431-10439.

【17】Zhang F Z, Gao B D, Zhou P, et al. Triangular pulse generation by polarization multiplexed optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2016, 28(15): 1645-1648.

【18】Xiang P, Guo H, Chen D L, et al. A novel approach to photonic generation of periodic triangular radio frequency waveforms[J]. Optica Applicata, 2015, 45(3): 381-391.

【19】Zhang C X, Zhang X Q, Hu S L. Development ofapplication research on fiber delay lines[J]. Chinese Journal of Lasers, 2009, 36(9): 2234-2244.
张春熹, 张晓青, 胡姝玲. 光纤延迟线应用研究动态[J]. 中国激光, 2009, 36(9): 2234-2244.

【20】Liu W L, Yao J P. Photonic generation of microwave waveforms based on a polarization modulator in a Sagnac loop[J]. Journal of Lightwave Technology, 2014, 32(20): 3637-3644.

【21】Jia D G, Guo Q, Ma C B, et al. Tunable dispersion compensation on optical fiber communication system[J]. Laser and Infrared, 2011, 41(1): 15-22.
贾大功, 郭强, 马彩缤, 等. 光纤通信系统中的可调谐色散补偿技术[J]. 激光与红外, 2011, 41(1): 15-22.

【22】Zhang X, Yang Z, Li Q L, et al. Research on temperature tuning properties of chirped fiber grating[J]. Acta Optica Sinica, 2016, 36(5): 0505002.
张新, 杨直, 李强龙, 等. 啁啾光纤光栅的温度调谐特性研究[J]. 光学学报, 2016, 36(5): 0505002.

【23】Wu Z L. The research of high dynamic range microwave photonic link and all-optical frequency down-conversion technology[D]. Beijing: Beijing University of Posts and Telecommunications, 2012.
吴钟乐. 大动态微波光子链路与全光下变频技术研究[D]. 北京: 北京邮电大学, 2012.

【24】Chen Y, Wen A, Guo J, et al. A novel optical mm-wave generation scheme based on three parallel Mach-Zehnder modulators[J]. Optics Communications, 2011, 284(5): 1159-1169.

【25】Feng Z H, Fu S N, Tang M, et al. Investigation on agile bias control technique for arbitrary-point locking inLithium Niobate Mach-Zehnder modulators[J]. Acta Optica Sinica, 2012, 32(12): 1206002.
冯振华, 付松年, 唐明, 等. LiNbO3马赫-曾德尔调制器任意偏置工作点锁定技术的研究[J]. 光学学报, 2012, 32(12): 1206002.

引用该论文

Yuan Muye,Liu Bo,Wang Tianliang,Xu Zhikang. Sawtooth Waveform Generation Based on Two Parallel Mach-Zehnder Modulators[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070701

袁牧野,刘波,王天亮,徐志康. 基于并联马赫-曾德尔调制器的锯齿波生成方法[J]. 激光与光电子学进展, 2018, 55(7): 070701

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF