首页 > 论文 > 激光与光电子学进展 > 55卷 > 7期(pp:71103--1)

基于模糊函数的聚焦扫描计算成像模型

Ambiguity Function Based Computational Imaging Model for Focal Sweep

高姗   邱钧   刘畅  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

聚焦扫描成像模型作为一种有效的计算成像手段,可以实现大景深拓展。从模糊函数理论出发,提出聚焦扫描的逆滤波计算成像模型,并对景深拓展性能进行分析。根据光学系统模糊函数与光学传递函数的关系,利用聚焦误差推演出聚焦扫描成像的光学传递函数。对光学传递函数的近似三维空间不变性给出理论分析,并基于此光学传递函数建立聚焦扫描的逆滤波计算成像模型。以具体成像模型为例,利用HOPKINS判据,分析了不同扫描范围对该成像模型景深拓展性能的影响。通过数值模拟验证了聚焦扫描成像光学模型传递函数的正确性;利用逆滤波方法对扫描范围分别为0.09,0.18,0.36 mm的聚焦扫描成像模型进行计算成像,并对成像效果进行了分析比较。结果表明:聚焦扫描成像模型可以实现景深拓展;随着扫描范围增加,景深拓展性能提高。

Abstract

As an effective means of computational imaging, focal sweep imaging model can extend the depth of field. Based on the ambiguity function theory, we propose an inverse filtering computational imaging model based on focal sweep mode and analyze the expand performance of the depth of field. We obtain the optical transfer function of focal sweep imaging using focus error based on the relationship between the ambiguity function and the optical transfer function. A theoretical analysis of the approximate three-dimensional space invariance of the optical transfer function is given. Based on the optical transfer function, we establish an inverse filtering computational imaging model of focal sweep. Taking a concrete imaging model as an example, we analyze the influence of different scanning ranges on the expand performance of depth of field of focal sweep imaging model based on the HOPKINS criterion. Through numerical simulation, we verify the correctness of the optical transfer function of focal sweep imaging model. We analyze and compare the imaging results of focal sweep imaging model of different scanning ranges (0.09, 0.18, 0.36 mm) based on inverse filtering model. The analysis shows that the depth of field can be extended by focal sweep imaging model; the larger the sweep distance, the better the performance of the depth of field of focal sweep imaging model.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/lop55.071103

所属栏目:成像系统

基金项目:国家自然科学基金(61372150)、高动态导航技术北京市重点实验室开放课题(HDN2017004)

收稿日期:2018-01-29

修改稿日期:2018-02-07

网络出版日期:--

作者单位    点击查看

高姗:北京信息科技大学应用数学研究所, 北京 100101
邱钧:北京信息科技大学应用数学研究所, 北京 100101
刘畅:北京信息科技大学应用数学研究所, 北京 100101

联系人作者:邱钧(qiujun@bistu.edu.cn)

备注:高姗(1993-),女,硕士研究生,主要从事图像处理方面的研究。E-mail: gaoshan_bistu@163.com

【1】Levin A, Fergus R, Durand F, et al. Image and depth from a conventional camera with a coded aperture[J]. ACM Transactions on Graphics, 2007, 26(3): 70.

【2】Veeraraghavan A, Raskar R, Agrawal A, et al. Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing[J]. ACM Transactions on Graphics, 2007, 26(3): 69.

【3】Zhou C Y, Lin S, Nayar S K. Coded aperture pairs for depth from defocus[J]. International Journal of Computer Vision, 2010, 93(1): 53-72.

【4】Kuthirummal S, Nagahara H, Zhou C Y, et al. Flexible depth of field photography[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): 58-71.

【5】Jin X, Liu L, Chen Y, et al. Point spread function and depth-invariant focal sweep point spread function for plenoptic camera 2.0[J]. Optics Express, 2017, 25(9): 9947-9962.

【6】Li S J, Fan X, Zhu B, et al. A method for small infrared targets detection based on the technology of motion blur recovery[J]. Acta Optica Sinica, 2017, 37(6): 0610001.
李思俭, 樊祥, 朱斌, 等. 基于运动模糊复原技术的红外弱小目标检测方法[J]. 光学学报, 2017, 37(6): 0610001.

【7】Huang Y L, Zhao J F, Zhang K Q, et al. Gradient constrained microscopic imaging quality improvement method with objective lens measurement[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111001.
黄奕龙, 赵巨峰, 张克奇, 等. 结合物镜测试的梯度约束显微成像质量提升方法[J]. 激光与光电子学进展, 2017, 54(11): 111001.

【8】Brenner K H, Lohmann A W, Ojeda-Castaneda J. The ambiguity function as a polar display of the OTF[J]. Optics Communications, 1983, 44(5): 323-326.

【9】Dowski E R, Cathey W T. Extended depth of field through wave-front coding[J]. Applied Optics, 1995, 34(11): 1859-1866.

【10】Chi W L, George N. Electronic imaging using a logarithmic asphere[J]. Optics Letters, 2001, 26(12): 875-877.

【11】Castro A, Oieda-Castaneda J. Increased depth of field with phase-only filters: ambiguity function (invited paper)[J]. Proceedings of SPIE, 2005, 5827: 1-11.

【12】Guo X H, Zhao Y J, Dong L Q, et al. Analysis of effect of phase plate decenter on wavefront coding imaging[J]. Chinese Journal of Lasers, 2015, 42(8): 0809002.
郭小虎, 赵跃进, 董立泉, 等. 相位板偏心对波前编码系统的成像影响分析[J]. 中国激光, 2015, 42(8): 0809002.

【13】Liu Q X, Wang F, Wang Y C. Design of long depth of field array optical components defect detection system[J]. Acta Optica Sinica, 2017, 37(3): 0322002.
刘钦晓, 王方, 王渊承. 长景深阵列光学组件缺陷检测系统设计[J]. 光学学报, 2017, 37(3): 0322002.

【14】Yokoya R, Nayar S K. Extended depth of field catadioptric imaging using focal sweep[C]. IEEE International Conference on Computer Vision, 2015: 15801663.

【15】Miau D, Cossairt O, Nayar S K. Focal sweep videography with deformable optics[C]. IEEE International Conference on Computational Photography, 2013: 13580204.

【16】Goodman J W. Introduction to Fourier optics[M]. Qin K C, Transl. Beijing: Electronic Industry Press, 2011: 104-108.
古德曼. 傅里叶光学导论[M]. 秦克诚, 译. 北京: 电子工业出版社, 2011: 104-108.

【17】Zhang X D. Modern signal processing[M]. 3rd ed. Beijing: Tsinghua University Press, 2015: 339-342.
张贤达. 现代信号处理 [M]. 3版. 北京: 清华大学出版社, 2015: 339-342.

【18】Yang Q G, Liu L R, Lang H T. Computation of the ambiguity function for circularly symmetric pupils[J]. Journal of Optics A, 2005, 7(8): 431-437.

【19】Baek J. Fast computation of the OTFs for various computational cameras[R]. Palo Alto: Stanford University, 2010.

【20】Bartelt H O, Ojedacastaeda J, Sicre E E. Misfocus tolerance seen by simple inspection of the ambiguity function[J]. Applied Optics, 1984, 23(16): 2693.

【21】Jansson P A. Deconvolution of images and spectra[M]. Orlando, FL: Academic Press, 1996: 3224-3225.

【22】Shannon C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(3): 379-423.

【23】Lebrun M. An analysis and implementation of the BM3D image denoising method[J]. Image Processing On Line, 2012, 2: 175-213.

引用该论文

Gao Shan,Qiu Jun,Liu Chang. Ambiguity Function Based Computational Imaging Model for Focal Sweep[J]. Laser & Optoelectronics Progress, 2018, 55(7): 071103

高姗,邱钧,刘畅. 基于模糊函数的聚焦扫描计算成像模型[J]. 激光与光电子学进展, 2018, 55(7): 071103

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF