首页 > 论文 > 激光与光电子学进展 > 55卷 > 7期(pp:72501--1)

一维体系等离激元的偶极和四极模式的激发与调控特性

Excitation and Modulation Properties of Dipole and Quadrupole Modes of Plasmon in One-Dimensional System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用紧束缚模型和本征方程方法,研究了一维体系中等离激元的偶极和四极模式,以及外场、体系的尺寸和电子数对这两种模式的调控作用。结果表明,外场可控制等离激元的模式,反对称的电势场仅激发偶极模式,对称电势场仅激发四极模式;利用等离激元的尺寸效应,增加一维体系的长度可减小等离激元的频率,增大激发强度;利用等离激元的电荷累积效应,在电子数达到半满之前,增大一维体系中的电子数可增大等离激元的频率和激发强度,且由于电子和空穴激发的等价性,等离激元的激发强度随电子数变化的曲线关于半满电子数对称。在等离激元的尺寸效应方面,本征方程方法得到的结果可用无规相近似方法得到较好的拟合。

Abstract

By using the tight-binding model and the eigen-equation method, both the dipole and quadrupole modes of the plasmon in one-dimensional system are studied. The modulation effects of the external field, the size of system and the number of electrons on these two modes are investigated. The results show that, the modes of the plasmon can be controlled by the external field, a symmetrical electric potential field only excites the quadrupole mode, and an anti-symmetrical electric potential field only excites the dipole mode. Based on the size effect of plasmon, the increase of the length of one-dimensional system can reduce the plasmon frequency and enhance the excitation intensity. Based on the charge accumulation effect of plasmon, the increase of the number of electrons before half filling can increase the frequency and excitation intensity of plasmon. Moreover, the excitation intensity of plasmon is symmetric with respect to the half-filling electron number since the excitations of electrons and holes are equivalent. As for the size effect of plasmon, the results calculated by the eigen-equation method can be well fitted by those obtained by the random phase approximation method.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/lop55.072501

所属栏目:光电子学

基金项目:国家自然科学基金(11647156)、广东省自然科学基金(2014A030307035,2017A030307015)、岭南师范学院校级科研项目(ZL1618)

收稿日期:2018-02-02

修改稿日期:2018-02-07

网络出版日期:--

作者单位    点击查看

吴仍来:岭南师范学院物理科学与技术学院, 广东 湛江 524048
全军:岭南师范学院物理科学与技术学院, 广东 湛江 524048
阳喜元:岭南师范学院物理科学与技术学院, 广东 湛江 524048
肖世发:岭南师范学院物理科学与技术学院, 广东 湛江 524048
薛红杰:西安航空学院电子工程学院, 陕西 西安 710077

联系人作者:吴仍来(wurenglai@sohu.com)

备注:吴仍来(1986—),男,博士,讲师,主要从事等离激元方面的研究。E-mail: wurenglai@sohu.com

【1】Shynkarenko O V, Kravchenko S A. Surface plasmon resonance sensors: Methods of surface functionalization and sensitivity enhancement[J]. Theoretical & Experimental Chemistry, 2015, 51(5): 273-292.

【2】Baiad M D, Kashyap R. Concatenation of surface plasmon resonance sensors in a single optical fiber using tilted fiber Bragg gratings[J]. Optics Letters, 2015, 40(1): 115-118.

【3】Heidarzadeh H. Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core-shell hemispherical nanoparticles and metallic back grating[J]. Applied Optics, 2016, 55(7): 1779-1785.

【4】Zhou Z Q, Wang L X, Shi W, et al. A synergetic application of surface plasmon and field effect to improve Si solar cell performance[J]. Nanotechnology, 2016, 27(14): 145203.

【5】Wang Y, Wang X, Li L W. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092401.
王玥, 王暄, 李龙威. 基于表面等离激元薄膜太阳能电池陷光特性的研究[J]. 激光与光电子学进展, 2015, 52(9): 092401.

【6】Dou X J, Min C J, Zhang Y Q, et al. Surface plasmon polaritons optical tweezers technology[J]. Acta Optica Sinica, 2016, 36(10): 1026004.
豆秀婕, 闵长俊, 张聿全, 等. 表面等离激元光镊技术[J]. 光学学报, 2016, 36(10): 1026004.

【7】Shen J F, Zhang C J, Zhang Y Q, et al. Study on novel nano-heating source based on plasmonic nanotweezer[J]. Acta Optica Sinica, 2014, 34(9): 0924001.
沈军峰, 张翠娇, 张聿全, 等. 基于表面等离激元光镊的新型纳米热源研究[J]. 光学学报, 2014, 34(9): 0924001.

【8】Li T, Chen J, Zhu S N. Manipulating surface plasmon propagation: From beam modulation to near-field holography[J]. Laser & Optoelectronics Progress, 2017, 54(5): 050002.
李涛, 陈绩, 祝世宁. 表面等离激元的传播操控: 从波束调制到近场全息[J]. 激光与光电子学进展, 2017, 54(5): 050002.

【9】Yang X, Zhai F, Hu H, et al. Far-field spectroscopy and near-field optical imaging of coupled plasmon-phonon polaritons in 2D van der Waals heterostructures[J]. Advanced Materials, 2016, 28(15): 2931-2938.

【10】Wang P, Tang C, Yan Z, et al. Graphene-based superlens for subwavelength optical imaging by graphene plasmon resonances[J]. Plasmonics, 2016, 11(2): 515-522.

【11】Shi Z D, Zhao H F, Liu J L, et al. Design of a metallic waveguide all-optical switch based on surface plasmon polaritons[J]. Acta Optica Sinica, 2015, 35(2): 0213001.
石振东, 赵海发, 刘建龙, 等. 基于表面等离激元的金属波导全光开关设计[J]. 光学学报, 2015, 35(2): 0213001.

【12】Feng D D, Li Z Q, Yue Z, et al. Hybrid surface plasmonic nanolaser with three dimensional optical field confinement[J]. Chinese Journal of Lasers, 2017, 44(10): 1001005.
冯丹丹, 李志全, 岳中, 等. 三维光场限制的混合表面等离子体纳米激光器[J]. 中国激光, 2017, 44(10): 1001005.

【13】Grasso L, Wyss R, Weidenauer L, et al. Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy[J]. Analytical & Bioanalytical Chemistry, 2015, 407(18): 5425-5432.

【14】Chen C W, Chan Y C, Hsiao M, et al. Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with Au nanorods[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32108-32119.

【15】Stojanovi I, Hal Y V, Velden T J, et al. Detection of apoptosis in cancer cell lines using surface plasmon resonance imaging[J]. Sensing and Bio-Sensing Research, 2016, 7: 48-54.

【16】Wang M, Cao M, Chen X, et al. Subradiant plasmon modes in multilayer metal-dielectric nanoshells[J]. Journal of Physical Chemistry C, 2016, 115(43): 20920-20925.

【17】Chu M W, Myroshnychenko V, Chen C H, et al. Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam[J]. Nano Letters, 2009, 9(1): 399-404.

【18】Zuloaga J, Prodan E, Nordlander P. Quantum description of the plasmon resonances of a nanoparticle dimer[J]. Nano Letters, 2009, 9(2): 887-891.

【19】Kuisma M, Sakko A, Rossi T P, et al. Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations[J]. Physical Review B, 2015, 91(11): 115431.

【20】Saito H, Yamamoto N. Size dependence of bandgaps in a two-dimensional plasmonic crystal with a hexagonal lattice[J]. Optics Express, 2015, 23(3): 2524-2540.

【21】Baida H, Billaud P, Marhaba S, et al. Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO2 nanoparticles[J]. Nano Letters, 2012, 9(10): 3463-3469.

【22】Ma W Y, Yang H, Hilton J P, et al. A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures[J]. Optics Express, 2010, 18(2): 843-853.

【23】Wei H, Zhang S, Tian X, et al. Highly tunable propagating surface plasmons on supported silver nanowires[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(12): 4494-4499.

【24】Yuan Z, Gao S. Plasmon resonances in linear atomic chains: Free-electron behavior and anisotropic screening of electrons[J]. Physical Review B, 2008, 78(23): 235413-235422.

【25】Cassidy A, Grigorenko I, Haas S. Formation of collective excitations in quasi-one-dimensional metallic nanostructures: Size and density dependence[J]. Physical Review B, 2008, 77(24): 245404.

【26】Muniz R A, Haas S, Levi A F J, et al. Plasmonic excitations in tight-binding nanostructures[J]. Physical Review B, 2009, 80(4): 1132-1136.

【27】Solis D J, Willingham B, Nauert S L, et al. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes[J]. Nano Letters, 2012, 12(3): 1349-1353.

【28】Xin W, Wu R L, Xue H J, et al. Plasmonic excitations in mesoscopic-sized atomic chains: A tight-binding model[J]. Acta Physica Sinica, 2013, 62(17): 177301.
辛旺, 吴仍来, 薛红杰 等. 介观尺寸原子链中的等离激元: 紧束缚模型[J]. 物理学报, 2013, 62(17): 177301.

【29】Wu R L, Xiao S F, Xue H J, et al. Quantization of plasmon in two-dimensional square quantum dot system[J]. Acta Physica Sinica, 2017, 66(22): 227301.
吴仍来, 肖世发, 薛红杰, 等. 二维方形量子点体系等离激元的量子化[J]. 物理学报, 2017, 66(22): 227301.

【30】Zhu C, Liu H, Wang S M, et al. Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain[J]. Optics Express, 2010, 18(25): 26268-26273.

【31】Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4): 047401.

【32】Liu N, Weiss T, Mesch M, et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing[J]. Nano Letters, 2010, 10(4): 1103-1107.

【33】Wei Q H, Su K H, Durant S A, et al. Plasmon resonance of finite one-dimensional au nanoparticle chains[J]. Nano Letters, 2004, 4(6): 1067-1071.

【34】Aruga T, Tochihara H, Murata Y. Measurement of overlayer-plasmon dispersion in k chains adsorbed on Si(001) 2×1[J]. Physical Review Letters, 1984, 53(4): 372-375.

【35】Sarma S D, Lai W. Screening and elementary excitations in narrow-channel semiconductor microstructures[J]. Physical Review B, 1985, 32(32): 1401-1404.

引用该论文

Wu Renglai,Quan Jun,Yang Xiyuan,Xiao Shifa,Xue Hongjie. Excitation and Modulation Properties of Dipole and Quadrupole Modes of Plasmon in One-Dimensional System[J]. Laser & Optoelectronics Progress, 2018, 55(7): 072501

吴仍来,全军,阳喜元,肖世发,薛红杰. 一维体系等离激元的偶极和四极模式的激发与调控特性[J]. 激光与光电子学进展, 2018, 55(7): 072501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF