首页 > 论文 > Photonics Research > 6卷 > 8期(pp:776-781)

Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Microring lasers feature ultralow thresholds and inherent wavelength-division multiplexing functionalities, offering an attractive approach to miniaturizing photonics in a compact area. Here, we present static and dynamic properties of microring quantum dot lasers grown directly on exact (001) GaP/Si. Effectively, a single-mode operation was observed at 1.3 μm with modes at spectrally distant locations. High temperature stability with T0~103 K has been achieved with a low threshold of 3 mA for microrings with an outer ring radius of 15 μm and a ring waveguide width of 4 μm. Small signal modulation responses were measured for the first time for the microrings directly grown on silicon, and a 3 dB bandwidth of 6.5 GHz was achieved for a larger ring with an outer ring radius of 50 μm and a ring waveguide width of 4 μm. The directly modulated microring laser, monolithically integrated on a silicon substrate, can incur minimal real estate cost while offering full photonic functionality.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000776

基金项目:Advanced Research Projects Agency–Energy (ARPA-E)10.13039/100006133 (DE-AR0000672).

收稿日期:2018-04-13

录用日期:2018-06-05

网络出版日期:2018-06-06

作者单位    点击查看

Yating Wan:Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, California 93106, USA
Daisuke Inoue:Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, California 93106, USAInstitute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8552, Japan
Daehwan Jung:Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, California 93106, USA
Justin C. Norman:Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA
Chen Shang:Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA
Arthur C. Gossard:Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USADepartment of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA
John E. Bowers:Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USADepartment of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA

联系人作者:Yating Wan(yatingwan@ucsb.edu)

【1】L. Ge, L. Feng, and H. G. L. Schwefel, “Optical microcavities: new understandings and developments,” Photon. Res. 5 , OM1–OM3 (2017).

【2】M. T. Hill, and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8 , 908–918 (2014).

【3】S. Longhi, and L. Feng, “Unidirectional lasing in semiconductor microring lasers at an exceptional point [Invited],” Photon. Res. 5 , B1–B6 (2017).

【4】T. Harayama, S. Sunada, and S. Shinohara, “Universal single-mode lasing in fully-chaotic two-dimensional microcavity lasers under continuous wave operation with large pumping power [Invited],” Photon. Res. 5 , B39–B46 (2017).

【5】S. J. Herr, K. Buse, and I. Breunig, “LED-pumped whispering-gallery laser,” Photon. Res. 5 , B34–B38 (2017).

【6】J. Ma, X. Jiang, and M. Xiao, “Kerr frequency combs in large size, ultra-high-Q toroid microcavities with low repetition rates,” Photon. Res. 5 , B54–B58 (2017).

【7】Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111 , 212101 (2017).

【8】Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4 , 1468–1473 (2017).

【9】Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9 , 837–842 (2015).

【10】Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108 , 221101 (2016).

【11】N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3??μm,” Opt. Lett. 42 , 3319–3322 (2017).

【12】Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3?μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper?JTh5C.3.

【13】S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18 , 1861–1863 (2006).

【14】J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68 , 3123–3125 (1996).

【15】J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24 , 028101 (2015).

【16】M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22 , 50–56 (2016).

【17】J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3 , 030901 (2018).

【18】D. Bimberg, and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14 , 388–397 (2011).

【19】Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4 , e358 (2015).

【20】S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10 , 307–311 (2016).

【21】D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5 , 1094–1100 (2017).

【22】Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3??μm submilliamp threshold quantum dot microlasers on Si,” Optica 4 , 940–944 (2017).

【23】Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5 , 528–533 (2018).

【24】J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26 , 11568–11576 (2018).

【25】J. Wang, H. Hu, H. Yin, Y. Bai, J. Li, X. Wei, Y. Liu, Y. Huang, X. Ren, and H. Liu, “1.3??μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers,” Photon. Res. 6 , 321–325 (2018).

【26】S. Liu, D. Jung, J. Norman, M. Kennedy, A. Gossard, and J. Bowers, “490??fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54 , 432–433 (2018).

【27】D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3??μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111 , 122107 (2017).

【28】D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97 , 1166–1185 (2009).

【29】R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43 , 1129–1139 (2007).

【30】K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. Part 2 43 , L1124–L1126 (2004).

【31】Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109 , 011104 (2016).

【32】Y. Wan, J. Norman, D. Jung, C. Shang, L. Macfarlane, Q. Li, M. J. Kennedy, Z. Zhang, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “O-band electrically injected InAs quantum-dot micro-ring lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 25 , 26853–26860 (2017).

【33】O. B. Shchekin, and D. G. Deppe, “Low-threshold high-to 1.3-μm InAs quantum-dot lasers due to P-type modulation doping of the active region,” IEEE Photon. Technol. Lett. 14 , 1231–1233 (2002).

【34】D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122 , 225703 (2017).

【35】A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3??μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32 , 02C108 (2014).

【36】R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28 , 1990–2008 (1992).

【37】D. Innoue, D. Jung, J. Norman, Y. Wan, N. Nishyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3??μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26 , 7022–7033 (2018).

【38】J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22 , 833–844 (1986).

【39】T. Kageyama, Q. H. Vo, K. Watanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Large modulation bandwidth (13.1??GHz) of 1.3??μm-range quantum dot lasers with high dot density and thin barrier layer,” in Proceedings of the Compound Semiconductor Week (CSW’2016) (2016), paper?MoC3–4.

【40】D. Arsenijevi?, and D. Bimberg, “Quantum-dot lasers for 35??Gbit/s pulse-amplitude modulation and 160??Gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892 , 98920S (2016).

引用该论文

Yating Wan, Daisuke Inoue, Daehwan Jung, Justin C. Norman, Chen Shang, Arthur C. Gossard, and John E. Bowers, "Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability," Photonics Research 6(8), 776-781 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF