首页 > 论文 > Photonics Research > 6卷 > 8期(pp:789-793)

Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Periodic surface structures were fabricated by irradiating lithium niobate (LN) crystals with femtosecond laser pulses at sample temperatures ranging from 28°C to 800°C. Carrier density and conductivity of the samples were increased via heating LN, which inhibited coulomb explosion to obtain a uniform periodic surface structure. The periodic surface structures cover an area of 8 mm×8 mm and have an average spacing of 174±5 nm. Meanwhile, the absorption of the processed sample is about 70% in the spectral range of 400–1000 nm, which is one order of magnitude higher than that of pure LN. Fabrication of periodic surface structures on heating LN with femtosecond laser pulses provides a possibility to generate nanogratings or nanostructures on wide-bandgap transparent crystals.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000789

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (11574158, 61378018); 111 Project (B07013); Program for Changjiang Scholars and Innovative Research Team in University (IRT_13R29); Fundamental Research Funds for the Central Universities.

收稿日期:2018-02-07

录用日期:2018-06-04

网络出版日期:2018-06-05

作者单位    点击查看

Qiang Li:Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
Qiang Wu:Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, ChinaCollaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Yanan Li:Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
Chunling Zhang:Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
Zixi Jia:Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
Jianghong Yao:Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, Chinae-mail: yaojh@nankai.edu.cn
Jun Sun:Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, ChinaCollaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Jingjun Xu:Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, ChinaCollaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

联系人作者:Qiang Wu(wuqiang@nankai.edu.cn)

【1】K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69 , S359–S366 (1999).

【2】T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70 , 383–385 (2000).

【3】H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high‐peak‐power Ti:sapphire laser at 798??nm,” Appl. Phys. Lett. 65 , 1850–1852 (1994).

【4】Y. Dai, G. Wu, X. Lin, G. Ma, and J. Qiu, “Femtosecond laser induced rotated 3D self-organized nanograting in fused silica,” Opt. Express 20 , 18072–18078 (2012).

【5】R. R. Gattass, and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2 , 219–225 (2008).

【6】M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516 , 6791–6795 (2008).

【7】Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett. 33 , 2713–2715 (2008).

【8】G. A. Torchia, C. Mendez, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83 , 559–563 (2006).

【9】A. Bouchier, G. Lucas-Leclin, and P. Georges, “Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978??nm in a periodically-poled MgO:LiNbO3 waveguide,” Opt. Express 13 , 6974–6979 (2005).

【10】Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91 , 081908 (2007).

【11】L. Razzari, P. Minzioni, and I. Cristiani, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86 , 131914 (2005).

【12】R. S. Weis, and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37 , 191–203 (1985).

【13】P. Wang, J. Qi, Z. Liu, Y. Liao, W. Chu, and Y. Cheng, “Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing,” Sci. Rep. 7 , 41211–41217 (2017).

【14】S. Kroesen, W. Horn, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing,” Opt. Express 22 , 23339–23348 (2014).

【15】F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106 , 081101 (2009).

【16】B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A 10 , 035301 (2008).

【17】H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6 , 112701 (2013).

【18】J. Bonse, J. Krüger, S. H?hm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24 , 042006 (2012).

【19】D. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76 , 154–228 (2016).

【20】R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62 , 13167–13173 (2000).

【21】N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81 , 345–356 (2005).

【22】J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197 , 891–895 (2002).

【23】B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53 , 1749–1761 (1996).

【24】J. Reif, “Processing with ultrashort laser pulses,” in Laser Processing of Materials: Fundamentals, Applications and Developments , OsgoodR. M., ed. (Springer, 2010), Chap. 6.

【25】M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82 , 1715–1717 (2003).

【26】L. Kovacs, and K. Polgar, “Electrical and pyroelectric properties,” in Properties of Lithium Niobate , WongK. K., ed. (Inspec, 2002), Chap. 6.

【27】S. A. Basun, G. Cook, and D. R. Evans, “Direct temperature dependence measurements of dark conductivity and two-beam coupling in LiNbO3:Fe,” Opt. Express 16 , 3993–4000 (2008).

【28】A. J. Eccles, J. A. van den Berg, A. Brown, and J. C. Vickerman, “Evidence of a charge induced contribution to the sputtering yield of insulating and semiconducting materials,” Appl. Phys. Lett. 49 , 188–190 (1986).

【29】M. Yang, Q. Wu, Z. Chen, B. Zhang, B. Tang, J. Yao, I. D. Olenik, and J. Xu, “Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse,” Opt. Lett. 39 , 343–346 (2014).

【30】J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106 , 104910 (2009).

【31】J. Reif, O. Varlamova, S. Varlamov, and M. Bestehorn, “The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation,” AIP Conf. Proc. 1464 , 428–441 (2012).

【32】J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys. A 92 , 1019–1024 (2008).

【33】M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3 , 4062–4070 (2009).

【34】T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73 , 1673–1675 (1998).

【35】J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett. 4 , 1055–1059 (1987).

引用该论文

Qiang Li, Qiang Wu, Yanan Li, Chunling Zhang, Zixi Jia, Jianghong Yao, Jun Sun, and Jingjun Xu, "Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating," Photonics Research 6(8), 789-793 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF