首页 > 论文 > Photonics Research > 6卷 > 8期(pp:821-824)

Chirped coupled ridge waveguide quantum cascade laser arrays with stable single-lobe far-field patterns

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Power scaling in a broad area quantum cascade laser (QCL) tends to deteriorate beam quality with the emission of a multiple-lobe far-field pattern. In this paper, we demonstrate a coupled ridge waveguide QCL array consisting of five elements with chirped geometry. In-phase mode operation is secured by managing supermode loss with properly designed geometries of ridges. A single-lobe lateral far-field with a near diffraction limited beam pattern was obtained in the whole current dynamic range. The devices were fabricated with the wet and dry etching method. The regrowth technique of the InP:Fe insulation layer and InP:Si waveguide layer was employed. Such a structure has the potential to optimize the beam quality of the recently reported high-power broad-area QCL with a reduced cascade number.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000821

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61435014, 61574136, 61627822, 61774146, 61790583); Chinese Academy of Sciences Key Project (CAS Key Project)10.13039/501100005151 (QYZDJ-SSW-JSC027, ZDRW-XH-2016-4); Natural Science Foundation of Beijing Municipality10.13039/501100004826 (4172060).

收稿日期:2018-03-22

录用日期:2018-06-11

网络出版日期:2018-06-13

作者单位    点击查看

Yue Zhao:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Jin-Chuan Zhang:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Chuan-Wei Liu:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Ning Zhuo:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Shen-Qiang Zhai:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Li-Jun Wang:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Jun-Qi Liu:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Shu-Man Liu:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Feng-Qi Liu:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, Chinae-mail: fqliu@semi.ac.cn
Zhan-Guo Wang:Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaBeijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, ChinaCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China

联系人作者:Jin-Chuan Zhang(zhangjinchuan@semi.ac.cn)

【1】J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264 , 553–556 (1994).

【2】M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23 , 5167–5182 (2015).

【3】A. Lyakh, C. K. N. Patel, E. Tsvid, M. Suttinger, P. Figueiredo, and R. Go, “Progress in high-power continuous-wave quantum cascade lasers,” Appl. Opt. 56 , H15–H23 (2017).

【4】Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95 , 071101 (2009).

【5】Y. Zhao, F. Yan, J. Zhang, F. Liu, N. Zhuo, J. Liu, L. Wang, and Z. Wang, “Broad area quantum cascade lasers operating in pulsed mode above 100°C λ ~ 4.7??μm,” J. Semicond. 38 , 074005 (2017).

【6】B. G?kden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34??W at λ ~ 4.36??μm,” Appl. Phys. Lett. 97 , 221104 (2010).

【7】S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5??W output power at 300??K,” Opt. Express 19 , 16229–16235 (2011).

【8】D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106 , 091105 (2015).

【9】E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 9 , 125–127 (1984).

【10】M. Cronin‐Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48 , 1240–1242 (1986).

【11】D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction‐coupled semiconductor laser arrays,” Appl. Phys. Lett. 53 , 1165–1167 (1988).

【12】J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55 , 334–336 (1989).

【13】E. Kapon, C. Lindsey, J. Katz, S. Margalit, and A. Yariv, “Chirped arrays of diode lasers for supermode control,” Appl. Phys. Lett. 45 , 200–202 (1984).

【14】G. M. de Naurois, M. Carras, G. Maisons, and X. Marcadet, “Effect of emitter number on quantum cascade laser monolithic phased array,” Opt. Lett. 37 , 425–427 (2012).

【15】G. M. D. Naurois, M. Carras, B. Simozrag, O. Patard, F. Alexandre, and X. Marcadet, “Coherent quantum cascade laser micro-stripe arrays,” AIP Adv. 1 , 032165 (2011).

【16】A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Continuous wave operation of buried heterostructure 4.6??μm quantum cascade laser Y-junctions and tree arrays,” Opt. Express 22 , 1203–1208 (2014).

【17】C. Sigler, C. A. Boyle, J. D. Kirch, D. Lindberg, T. Earles, B. Dan, and L. J. Mawst, “4.7??μm-emitting near-resonant leaky-wave-coupled quantum cascade laser phase-locked arrays,” IEEE J. Sel. Top. Quantum Electron. 23 , 1200706 (2017).

【18】Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106 , 142104 (2015).

【19】L. Wang, J. Zhang, Z. Jia, Y. Zhao, C. Liu, Y. Liu, S. Zhai, Z. Ning, X. Xu, and F. Liu, “Phase-locked array of quantum cascade lasers with an integrated Talbot cavity,” Opt. Express 24 , 30275–30281 (2016).

【20】F. L. Yan, J. C. Zhang, Z. W. Jia, N. Zhuo, S. Q. Zhai, S. M. Liu, F. Q. Liu, and Z. G. Wang, “High-power phase-locked quantum cascade laser array emitting at λ ~ 4.6?μm,” AIP Adv. 6 , 035022 (2016).

【21】Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111 , 061108 (2017).

【22】R. Kaspi, S. Luong, C. Yang, C. Lu, T. C. Newell, and T. Bate, “Extracting fundamental transverse mode operation in broad area quantum cascade lasers,” Appl. Phys. Lett. 109 , 211102 (2016).

【23】A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6??μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109 , 121109 (2016).

【24】P. Figueiredo, M. Suttinger, R. Go, A. Todi, S. Hong, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29 , 1328–1331 (2017).

【25】W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, S. Kurlov, W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, and S. Kurlov, “Power scaling in quantum cascade lasers using broad-area stripes with reduced cascade number,” Opt. Eng. 57 , 011015 (2017).

【26】M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation,” Opt. Eng. 57 , 011011 (2017).

【27】P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106 , 071104 (2015).

【28】Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4??W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98 , 181106 (2011).

【29】N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. H?fler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15 , 13227–13235 (2007).

引用该论文

Yue Zhao, Jin-Chuan Zhang, Chuan-Wei Liu, Ning Zhuo, Shen-Qiang Zhai, Li-Jun Wang, Jun-Qi Liu, Shu-Man Liu, Feng-Qi Liu, and Zhan-Guo Wang, "Chirped coupled ridge waveguide quantum cascade laser arrays with stable single-lobe far-field patterns," Photonics Research 6(8), 821-824 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF