首页 > 论文 > 光学学报 > 38卷 > 8期(pp:815018--1)

基于扇形邻域差异直方图的匣钵裂纹检测

Crack Extraction from Sagger Bottom Based on Sector Neighborhood Difference Histogram

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对匣钵底面裂纹图像背景复杂,裂纹分布密集、断续严重,裂纹特征不明显,从而导致裂纹提取难度大的问题,提出了一种基于扇形邻域差异直方图的匣钵裂纹检测方法。根据裂纹像素点的空间聚集特征和方向特征,构造多尺度、多方向扇形滤波器;通过计算扇形滤波器与图像卷积的结果,获取能够反映裂纹分布概率特征的扇形邻域差异直方图;提取裂纹分布概率特征,并根据裂纹像素点和非裂纹像素点在该特征上的差异,实现裂纹提取;最后,提出基于裂纹全局及局部的长度和分布面积特征融合的指标,对匣钵龟裂程度进行评估。实验结果表明,该算法对匣钵底面上各种类型的裂纹都能实现良好的提取效果,正确率和召回率均可达到90%以上,优于现有其他较好的裂纹提取方法,龟裂程度评估方法的评估结果也与人的主观评估结果一致。

Abstract

The image background of the crack on the sagger bottom is complicated, the distribution of cracks is dense and intermittent, and characteristics of cracks are not obvious, so crack extraction of the sagger bottom is difficult. To solve the problems, a method for detecting sagger cracks based on sector neighborhood difference histogram is proposed. A multi-scale, multi-direction sector filter is constructed according to the spatial clustering characteristic and directional characteristic of the crack pixels. By calculating the convolution of the filters with the image, a sector neighborhood difference histogram that can reflect the crack distribution probability feature is obtained. Crack extraction is realized depending on the difference in crack distribution probability characteristics between the crack pixels and non-crack pixels. Finally, the global and local length and distribution area characteristics of the cracks are integrated to evaluate the degree of cracking. The experimental results show that the proposed algorithm can achieve good extraction results for all types of cracks on the sagger bottom. The precision and recall of the algorithm can reach higher than 90%, which is better than some of the existing good methods for crack extraction. The assessment results of the method for assessing the severity of cracks are also basically the same as those of a person′s subjective assessment.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/aos201838.0815018

所属栏目:“机器视觉检测与应用”专题

基金项目:国家自然科学基金创新研究群体科学基金(61621062)、国家杰出青年科学基金(61725306)、国家自然科学基金应急管理重点项目(61751312)

收稿日期:2018-03-30

修改稿日期:2018-05-10

网络出版日期:2018-05-15

作者单位    点击查看

徐德刚:中南大学信息科学与工程学院, 湖南 长沙 410083
李翔鑫:中南大学信息科学与工程学院, 湖南 长沙 410083
阳春华:中南大学信息科学与工程学院, 湖南 长沙 410083
桂卫华:中南大学信息科学与工程学院, 湖南 长沙 410083

联系人作者:徐德刚(dgxu@csu.edu.cn)

【1】Kamaliardakani M, Sun L, Ardakani M K. Sealed-crack detection algorithm using heuristic thresholding approach[J]. Journal of Computing in Civil Engineering, 2016, 30(1): 04014110.

【2】Chen B, Cao W L, He Y H. Fractal dimension applied in highway surface crack detection[J]. Proceedings of SPIE, 2012, 8334: 83340B.

【3】Shu Z, Guo Y. Algorithm on contourlet domain in detection of road cracks for pavement images[C]∥IEEE International Symposium on Distributed Computing and Applications to Business, Engineering and Science, 2010: 518-522.

【4】Zalama E,Gómez-García-Bermejo J, Medina R, et al. Road crack detection using visual features extracted by Gabor filters[J]. Computer-Aided Civil and Infrastructure Engineering, 2013, 29(5): 342-358.

【5】Nejad F M, Zakeri H. An optimum feature extraction method based on Wavelet-Radon transform and dynamic neural network for pavement distress classification[J]. Expert Systems with Applications, 2011, 38(8): 9442-9460.

【6】Ouyang A, Dong Q, Wang Y, et al. The classification of pavement crack image based on beamlet algorithm[J]. IFIP Advances in Information and Communication Technology, 2014, 420: 129-137.

【7】Pan Z, Zheng X K, Wang Y T, et al. Nondestructive testing for bonding defects in aerospace composite based on continuous terahertz wave[J]. Acta Optica Sinica, 2015, 35(s1): s111003.
潘钊, 郑晓康, 王玉田, 等. 基于连续太赫兹波的航天复合材料粘接缺陷检测[J]. 光学学报, 2015, 35(s1): s111003.

【8】Zhang X W, Ding Y Q, Yan P. Vision inspection of metal surface defects based on infrared imaging[J]. Acta Optica Sinica, 2011, 31(3): 0312004.
张学武, 丁燕琼, 闫萍. 一种基于红外成像的强反射金属表面缺陷视觉检测方法[J]. 光学学报, 2011, 31(3): 0312004.

【9】Oliveira H, Correia P L. Automatic road crack segmentation using entropy and image dynamic thresholding[C]∥IEEE Signal Processing Conference, 2009: 622-626.

引用该论文

Xu Degang,Li Xiangxin,Yang Chunhua,Gui Weihua. Crack Extraction from Sagger Bottom Based on Sector Neighborhood Difference Histogram[J]. Acta Optica Sinica, 2018, 38(8): 0815018

徐德刚,李翔鑫,阳春华,桂卫华. 基于扇形邻域差异直方图的匣钵裂纹检测[J]. 光学学报, 2018, 38(8): 0815018

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF