首页 > 论文 > 光学学报 > 38卷 > 8期(pp:815002--1)

自动光学(视觉)检测技术及其在缺陷检测中的应用综述

Review on Automated Optical (Visual) Inspection and Its Applications in Defect Detection

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

以智能制造业表面缺陷在线自动检测为应用背景,系统地综述了自动光学(视觉)检测(以下统称自动光学检测,AOI)技术。内容涉及AOI技术的基本原理、光学成像方法、系统集成关键技术、图像处理与缺陷分类方法等。对AOI系统集成中的关键技术,如视觉照明技术、大视场高速成像技术、分布式高速图像处理技术、精密传输和定位技术和网络化控制技术等进行了概述;对表面缺陷AOI主要光学成像方法的基本光学原理、功能和应用场合进行了总结;对表面缺陷检测中的图像处理、缺陷几何特征定义、特征识别与分类算法进行了系统阐述,重点介绍了周期纹理表面缺陷图像中的纹理背景去除方法,复杂和随机纹理表面缺陷的深度学习检测、识别与分类方法。

Abstract

The authors comprehensively review technique of automated optical (visual) inspection(AOI) technique from aspects of the basic principle, optical imaging method, key techniques of system integration, image processing and defect classification at the application background of automated online surface defect inspection in intelligent manufacturing industry. The key technologies of system integration in automated optical inspection, such as visual lighting, high speed imaging in a large field of view, distributed high-speed image processing, precision transmission and positioning for the inspected objects, and networked control, are briefly summarized. The basic optical principles, functions and applications of the optical imaging methods commonly used in automated optical defect inspection are comprehensively reviewed. The image processing, defect geometric feature definition, feature recognition and classification algorithm for surface defect inspection are systematically summarized. Particularly, the methods of texture background removal in the images with periodic textures, and the detect detection, recognition and classification methods for complex and random texture surface based on depth learning are reviewed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP74

DOI:10.3788/aos201838.0815002

所属栏目:“机器视觉检测与应用”专题

基金项目:国家重大科学仪器开发与应用专项(2013YQ220749)、国家重点研发计划(2016YFF0101803)

收稿日期:2018-05-14

修改稿日期:2018-06-05

网络出版日期:2018-06-11

作者单位    点击查看

卢荣胜:合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009
吴昂:合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009河南农业大学机电工程学院, 河南 郑州 450002
张腾达:合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009
王永红:合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009

联系人作者:卢荣胜(rslu@hfut.edu.cn)

【1】Alaluf A, Birnbaum D. Inspection of PCBs by laser: induced fluorescence[J]. Circuit World, 2002, 28(1): 21-28.

【2】Mar N S S, Yarlagadda P K D V, Fookes C. Design and development of automatic visual inspection system for PCB manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(5): 949-962.

【3】Yang S W, Lin C S, Lin S K, et al. Automatic defect recognition of TFT array process using gray level co-occurrence matrix[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(11):2671-2676.

【4】Neogi N, Mohanta D K, Dutta P K. Review of vision-based steel surface inspection systems[J]. EURASIP Journal on Image and Video Processing 2014, 2014(1): 50.

【5】Min Y Z, Xiao B Y, Dang J W, et al. Real time detection system for rail surface defects based on machine vision[J]. EURASIP Journal on Image and Video Processing, 2018, 2018(1): 3.

【6】Shi Y Q, Lu R S, Zhang T D. Defect inspection system design based on the automated optical inspection technique for LCD backlight modules[J]. Chinese Journal of Sensors and Actuators, 2015, 28(5): 768-773.
史艳琼, 卢荣胜, 张腾达. 液晶显示屏背光源模组表面缺陷自动光学检测系统设计[J]. 传感技术学报, 2015, 28(5): 768-773.

【7】Janoczki M, Becker A, Jakab L, et al. Automatic optical inspection of soldering, materials science[M]. Yitzhak Mastai: IntechOpen, 2013.

【8】Smith A. Automated optical inspection and marking systems and methods: US09/941416[P]. 2003-03-06.

【9】Lu R S. State of the art of automated optical inspection[J]. Infrared and Laser Engineering, 2008, 37(s1): 120-123.
卢荣胜. 自动光学检测技术的发展现状[J]. 红外与激光工程, 2008, 37(s1): 120-123.

引用该论文

Lu Rongsheng,Wu Ang,Zhang Tengda,Wang Yonghong. Review on Automated Optical (Visual) Inspection and Its Applications in Defect Detection[J]. Acta Optica Sinica, 2018, 38(8): 0815002

卢荣胜,吴昂,张腾达,王永红. 自动光学(视觉)检测技术及其在缺陷检测中的应用综述[J]. 光学学报, 2018, 38(8): 0815002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF