首页 > 论文 > 激光与光电子学进展 > 55卷 > 8期(pp:80002--1)

高功率窄线宽光纤激光器研究进展

Progress in High-Power Narrow-Linewidth Fiber Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

高功率窄线宽光纤激光器在地球科学、光束合成、非线性频率转换等领域有重要的应用价值,近几年已经成为激光领域的研究热点。受激布里渊散射(SBS)、自相位调制(SPM)、四波混频(FWM)等非线性效应限制了窄线宽光纤激光器输出功率的提升。随着各种非线性效应抑制技术的发展,窄线宽光纤激光器的输出功率也得到了大幅提升,目前已经达到了千瓦量级。对1 μm波段高功率窄线宽光纤激光器的研究进行了详细的介绍,重点介绍了限制窄线宽激光器功率提升的非线性效应及其抑制方法、高功率窄线宽光纤激光器的种子源技术以及国内外典型的高功率窄线宽光纤激光器的研究成果。

Abstract

Narrow linewidth fiber lasers have gained extensive attention as their important applications in geoscience, nonlinear frequency conversion, and beam combining. Unfortunately, the output power of narrow linewidth fiber lasers is limited by nonlinear effects such as stimulated Brillouin scattering (SBS), self-phase modulation (SPM), and four wave mixing (FWM). Lots of methods have been proposed to suppress the nonlinear effects, which boost the output power of narrow linewidth fiber lasers up to kW level. In this paper, we give an overview of the research on high power narrow linewidth fiber lasers at the wavelength of 1 μm. The nonlinear effects and corresponding suppressing methods are introduced, as well as the recent progress and key factors of high power narrow linewidth fiber lasers.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:TN248.1

DOI:10.3788/lop55.080002

所属栏目:综述

基金项目:重大科学仪器设备开发项目(2017YFF0104500)

收稿日期:2018-01-19

修改稿日期:2018-02-24

网络出版日期:2018-03-07

作者单位    点击查看

郑也:北京航天控制仪器研究所, 北京 100094
李磐:北京航天控制仪器研究所, 北京 100094
朱占达:北京航天控制仪器研究所, 北京 100094
刘小溪:北京航天控制仪器研究所, 北京 100094
王军龙:北京航天控制仪器研究所, 北京 100094
王学锋:北京航天控制仪器研究所, 北京 100094

联系人作者:王军龙(wjl_casc@126.com); 王学锋(xuefeng_wang@sina.cn); 郑也(zhengye.no1@163.com);

【1】Xu S H, Li C, Zhang W N, et al. Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm[J]. Optics Letters, 2013, 38(4): 501-503.

【2】Li C, Xu S H, Huang X, et al. All-optical frequency and intensity noise suppression of single-frequency fiber laser[J]. Optics Letters, 2015, 40(9): 1964-1967.

【3】Mavalvala N, McClelland D E, Mueller G, et al. Lasers and optics: looking towards third generation gravitational wave detectors[J]. General Relativity and Gravitation, 2011, 43(2): 569-592.

【4】Wessels P, Karow M, Kuhn V, et al. Single-frequency fiber amplifiers for gravitational wave detection[C]∥CLEO: Science and Innovations 2013, 2013: CW3M.5.

【5】Chu S, Bjorkholm J E, Ashkin A, et al. Experimental observation of optically trapped atoms[J]. Physical Review Letters, 1986, 57(3): 314-317.

【6】Sané S S, Bennetts S, Debs J E, et al. 11 W narrow line width laser source at 780 nm for laser cooling and manipulation of rubidium[J]. Optics Express, 2012, 20(8): 8915-8919.

【7】Wu T, Peng X, Gong W, et al. Observation and optimization of 4 He atomic polarization spectroscopy[J]. Optics Letters, 2013, 38(6): 986-988.

【8】Thompson R J, Tu M, Aveline D C, et al. High power single frequency 780 nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals[J]. Optics Express, 2003, 11(14): 1709-1713.

【9】Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550 W of average output power[J]. Proceedings of SPIE, 2014, 8964: 896407.

【10】Zhang L, Jiang H W, Cui S Z, et al. Versatile Raman fiber laser forsodium laser guide star[J]. Laser & Photonics Reviews, 2014, 8(6): 889-895.

【11】Ricciardi I, Tommasi E D, Maddaloni P, et al. A narrow-linewidth, frequency-stablized OPO for sub-Doppler molecular spectroscopy around 3 μm[J]. Proceedings of SPIE, 2012, 8434: 84341Z.

【12】August S J, Goyal A K, Aggarwal R L, et al. Wavelength beam combining of ytterbium fiber lasers[J]. Optics Letters, 2003, 28(5): 331-333.

【13】Liu A, Mead R, Vatter T, et al. Spectral beam combining of high power fiber lasers[J]. Proceedings of SPIE, 2004, 5335: 81-88.

【14】August S J, Ranka J K, Fan T Y, et al. Beam combining of ytterbium fiber amplifiers[J]. Journal of the Optical Society of America B, 2007, 24(8): 1707-1715.

【15】Cheung E C, Ho J G, Goodno G D, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Optics Letters, 2008, 33(4): 354-356.

【16】Yu C X, August S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688.

【17】Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Optics Letters, 2012, 37(14): 2832-2834.

【18】Flores A, Dajani I, Holten R, et al. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers[J]. Optical Engineering, 2016, 55(9): 096101.

【19】Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 487-497.

【20】Schreiber T, Wirth C, Schmidt O, et al. Incoherent beam combining of continuous-wave and pulsed Yb-doped fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 354-360.

【21】Wirth C, Schmidt O, Tsybin I, et al. 2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers[J]. Optics Express, 2009, 17(3): 1178-1183.

【22】Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Optics Letters, 2011, 36(16): 3118-3120.

【23】Honea E, Afzal R S, Leuchs M S, et al. Advances in fiber laser spectral beam combining for power scaling[J]. Proceedings of SPIE, 2015, 9730: 97300Y.

【24】Zheng Y, Yang Y F, Wang J H, et al. 10.8 kW spectral beam combination of eight all-fiber super fluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071.

【25】http:∥news.lockheedmartin.com/2017-03-16-Lockheed- Martin-to-Deliver-World-Record-Setting-60 kW-Laser-to-U-S-Army.

【26】Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.

【27】Agrawal G P. Nonlinear fiber optics[M]. New York: Academic Press, 1997.

【28】Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers[J]. Journal of Lightwave Technology, 1997, 15(10): 1842-1851.

【29】Yin Z, Yan F P, Liu S, et al. Research of stimulated Brillouin scattering effect in 2 μm band single-frequency Raman fiber amplifier[J]. Navigation and Control, 2015, 14(1): 100-105.
尹智, 延凤平, 刘硕, 等. 2 μm波段单频拉曼光纤放大器中受激布里渊散射散射研究[J]. 导航与控制, 2015, 14(1): 100-105.

【30】Zhao D, Yan F P, Liu S, et al. Analysis of the characteristics of the thulium doped fiber amplifier for dual-single-frequency amplification[J]. Navigation and Control, 2017, 16(1): 57-63.
赵丹, 延凤平, 刘硕, 等. 掺铥光纤放大器对双单频激光放大的特性分析[J]. 导航与控制, 2017, 16(1): 57-63.

【31】WeBels P, Adel P, Wandt D, et al. Novel suppression scheme for Brillouin scattering[J]. Optics Express, 2004, 12(19): 4443-4448.

【32】Alegria C, Jeong Y, Codemard C, et al. 83-W single-frequency narrow-line width MOPA using large-core erbium ytterbium co-doped fiber[J]. IEEE Photonics Technology Letters, 2004, 16(8): 1825-1827.

【33】Leigh M, Shi W, Zong J, et al. High peak power single frequency pulses using a short polarization-maintaining phosphate glass fiber with a large core[J]. Applied Physics Letters, 2008, 92(18): 181108.

【34】Mermelstein M D, Andrejco M J, Fini J, et al. SBS suppression and acoustic management for high-power narrow-linewidth fiber lasers and amplifiers[J]. Proceedings of SPIE, 2010, 7580: 75801G.

【35】Robin C, Dajani I. Acoustically segmented photonic crystal fiber for single-frequency high-power laser applications[J]. Optics Letters, 2011, 36(14): 2641-2643.

【36】Li M J, Chen X, Wang J, et al. Al/Ge co-doped large mode area fiber with high SBS threshold[J]. Optics Express, 2007, 15(13): 8290-8299.

【37】Liu T, Tong W J, Zhang F H, et al. A new Ge/F-co-doped SMF with enhanced SBS threshold fabricated by PCVD[J]. Chinese Physics Letters, 2011, 28(10): 104211.

【38】Kovalev V I, Harrison R G. Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers[J]. Optics Letters, 2006, 31(2): 161-163.

【39】Liu A. Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient[J]. Optics Express, 2007, 15(3): 977-984.

【40】Hansryd J, Dross F, Westlund M, et al. Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution[J]. Journal of Lightwave Technology, 2001, 19(11): 1691-1697.

【41】Yoshizawa N, Imai T. Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling[J]. Journal of Lightwave Technology, 1993, 11(10): 1518-1522.

【42】Boggio J M C, Marconi J D, Fragnito H L. Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions[J]. Journal of Lightwave Technology, 2005, 23(11): 3808-3814.

【43】Engelbrecht R, Mueller M, Schmauss B. SBS shaping and suppression by arbitrary strain distributions realized by a fiber coiling machine[C]∥IEEE/LEOS Winter Topicals Meeting Series, 2009: 248-249.

【44】Zhang L, Cui S Z, Liu C, et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier[J]. Optics Express, 2013, 21(5): 5456-5462.

【45】Engelbrecht R. Analysis of SBS gain shaping and threshold increase by arbitrary strain distributions[J]. Journal of Lightwave Technology, 2014, 32(9): 1689-1700.

【46】Zeringue C, Dajani I, Naderi S, et al. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light[J]. Optics Express, 2012, 20(19): 21196-21213.

【47】Flores A, Lu C, Robin C, et al. Experimental and theoretical studies of phase modulation in Yb-doped fiber amplifiers[J]. Proceedings of SPIE, 2012, 8381: 83811B.

【48】Soh D, Koplow J P, Moore S W, et al. The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers[J]. Optics Express, 2010, 21(18): 22393-22405.

【49】Bednyakova A E, Gorbunov O A, Politko M O, et al. Generation dynamics of the narrowband Yb-doped fiber laser[J]. Optics Express, 2013, 21(7): 8177-8182.

【50】Roy V, Piché M, Babin F, et al. Nonlinear wave mixing in a multilongitudinal-mode erbium-doped fiber laser[J]. Optics Express, 2005, 13(18): 6791-6797.

【51】Kablukov S I, Zlobina E A, Podivilov E V, et al. Output spectrum of Yb-doped fiber lasers[J]. Optics Letters, 2012, 37(13): 2508-2510.

【52】Liu W, Kuang W J, Jiang M, et al. Modeling of the spectral evolution in a narrow-linewidth fiber amplifier[J]. Laser Physics Letters, 2016, 13(3): 035105.

【53】Babin S A, Churkin D V, Ismagulov A E, et al. Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser[J]. Journal of the Optical Society of America B, 2007, 24(8): 1729-1738.

【54】Cholan N A, Al-Mansoori M H, Noor A S M, et al. Multi-wavelength generation by self-seeded four wave mixing[J]. Optics Express, 2013, 21(5): 6131-6138.

【55】Liu G B, Yang Y F, Lei M, et al. 1.5 kW near-diffraction-limited all fiber ASE source with narrow linewidth[J]. Chinese Journal of Lasers, 2015, 42(12): 1202009.
刘广柏, 杨依枫, 雷敏, 等. 1.5 kW近衍射极限全光纤窄带超荧光光源[J]. 中国激光, 2015, 42(12): 1202009.

【56】Xu J M, Huang L, Jiang M, et al. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output[J]. Photonics Research, 2017, 5(4): 350-354.

【57】Chen X L, Zheng Y, Li X, et al. 10.6 GHz linewidth maintained random fiber laser seed source[J]. Chinese Journal of Lasers, 2017, 44(7): 0701005.
陈晓龙, 郑也, 李璇, 等. 10.6 GHz线宽保持随机光纤激光种子源[J]. 中国激光, 2017, 44(7): 0701005.

【58】Xu Y, Fang Q, Qin Y G, et al. 2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser[J]. Applied Optics, 2015, 54(32): 9419-9421.

【59】Huang Z H, Liang X B, Li C Y, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multi-longitudinal-mode oscillators[J]. Applied Optics, 2016, 55(2): 297-302.

【60】Hao J P, Zhao H, Zhang D Y, et al. kW-level narrow linewidth fiber amplifier seeded by a fiber Bragg grating based oscillator[J]. Applied Optics, 2015, 54(15): 4857-4862.

【61】Aoki Y, Tajima K, Mito I. Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems[J]. Journal of Lightwave Technology, 1988, 6(5): 710-719.

【62】Korotky S K. Multifrequency lightwave source using phase modulation for suppressing stimulated Brillouin scattering in optical fiber: EP0730190A3[P]. 1995-03-02.

【63】Yang J L, Guo Z N, Zha K D. Experimental study of phase modulation for SBS suppression in optical fiber CATV system[J]. Chinese Journal of Lasers, 2001, 28(5): 439-442.
杨建良, 郭照南, 查开德. 调相法抑制光纤CATV中受激布里渊散射的实验研究[J]. 中国激光, 2001, 28(5): 439-442.

【64】Liu Y F, Lü Z W, Dong Y K, et al. Research on stimulated Brillouin scattering suppression based on multi-frequency phase modulation[J]. Chinese Optics Letters, 2009, 7(1): 29-31.

【65】Wang X L, Zhou P, Leng J Y, et al. A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated single frequency laser for coherent beam combining[J]. IEEE Photonics Technology Letters, 2011, 23(14): 980-982.

【66】Williamson R S. Laser coherence control using homogeneous linewidth broadening: US20050047454A1[P]. 2003-08-29.

【67】Suradeepa V R. Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise[J]. Optics Express, 2013, 21(4): 4677-4687.

【68】Anderson B, Robin C, Flores A, et al. Experimental study of SBS suppression via white noise phase modulation[J]. Proceedings of SPIE, 2014, 8961: 89611W.

【69】Robin C, Dajani I, Zernigue C, et al. Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers[J]. Proceedings of SPIE, 2013, 8601: 86010Z.

【70】Anderson B, Flores A, Holten R, et al. Beam combining and SBS suppression in white noise and pseudorandom modulated amplifier[J]. Proceedings of SPIE, 2015, 9344: 93441U.

【71】Anderson B, Flores A, Holten R, et al. Comparison of phase modulation schemes for coherently combined fiber amplifiers[J]. Optics Express, 2015, 23(21): 27046-27060.

【72】Gray S, Liu A, Walton D T, et al. 502 watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier[J]. Optics Express, 2007, 15(25): 17044-17050.

【73】Jeong Y, Nilsson J, Sahu J K, et al. Power scaling of single frequency ytterbium-doped fiber master-oscillotor power amplifier sources up to 500 W[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 546-551.

【74】Robin C, Dajani I, Chiragh F. Experimental studies of segmented acoustically tailored photonic crystal fiber amplifier with 494 W single-frequency output[J]. Proceedings of SPIE, 2011, 7914: 79140B.

【75】Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letters, 2014, 39(3): 666-669.

【76】Ma P F, Zhou P, Ma Y X, et al. Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality[J]. Applied Optics, 2013, 52(20): 4854-4857.

【77】Huang L, Wu H S, Li R X, et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier[J]. Optics Letters, 2017, 42(1): 1-4.

【78】Edgecumbe J, Bjork D, Galipeau J, et al. Kilowatt-level PM amplifiers for beam combining[C]∥Frontiers in Optics, 2008, 2008: FTuJ2.

【79】Khitrov V, Farley K, Leveille R, et al. kW level narrow linewidth Yb fiber amplifiers for beam combining[J]. Proceedings of SPIE, 2010, 7686: 76860A.

【80】Goodno G D, McNaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 1.4 kW fiber amplifier[J]. Optics Letters, 2010, 35(10): 1542-1544.

【81】Engin D, Lu W, Akbulut M, et al. 1 kW cw Yb-fiber-amplifier with <0.5 GHz linewidth and near diffraction limited beam quality for coherent combining application[J]. Proceedings of SPIE, 2011, 7914: 791407.

【82】Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40 nm bandwidth[J]. Proceedings of SPIE, 2016, 9728: 972807.

【83】Dajani I, Zeringue C, Bronder T J, et al. A theoretical treatment of two approaches to SBS mitigation with two-tone amplification[J]. Optics Express, 2008, 16(18): 14233-14247.

【84】Dajani I, Zeringue C, Shay T M. Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 406-414.

【85】Dajani I, Zeringue C, Lu C, et al. Stimulated Brillouin scattering suppression through laser gain competition: scalability to high power[J]. Optics Letters, 2010, 35(18): 3114-3116.

【86】Zeringue C M, Dajani I, Moore G T. Suppression of stimulated Brillouin scattering in optical fibers through phase modulation: a time dependent model[J]. Proceedings of SPIE, 2011, 7914: 791409.

【87】Flores A, Dajani A, Naderi N A. High power, sub-GHz, monolithic fiber amplifier based on phase modulated laser gain competition[C]∥CLEO, 2014: SW3N.3.

【88】Flores A, Robin C, Lanari A, et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers[J]. Optics Express, 2014, 22(15): 17735-17744.

【89】Naderi N A, Flores A, Anderson B M, et al. Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition[J]. Optics Letters, 2016, 41(17): 3964-3967.

【90】Dajani I, Flores A, Holten R, et al. Multi-kilowatt power scaling and coherent beam combining of narrow linewidth fiber lasers[J]. Proceedings of SPIE, 2016, 9728: 972801.

【91】Naderi N A, Dajani I, Flores A. High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth[J]. Optics Letters, 2016, 41(5): 1018-1021.

【92】Yu C X, Shatrovoy O, Fan T Y. All-glass fiber amplifier pumped by ultra-high brightness pumps[J]. Proceedings of SPIE, 2016, 9728: 972806.

【93】Yu C X, Shatrovoy O, Fan T Y, et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier[J]. Optics Letters, 2016, 41(22): 5202-5205.

【94】Wirth C, Schreiber T, Rekas M, et al. High-power linear-polarized narrow linewidth photonic crystal fiber amplifier[J]. Proceedings of SPIE, 2010, 7580: 75801H.

【95】Nold J, Strecker M, Liem A, et al. Narrow linewidth single mode fiber amplifier with 2.3 kW average power[C]∥European Conference on Lasers and Electro-Optics/European Quantum Electronics Conference, 2015: CJ_11_4.

【96】Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier[J]. Optics Express, 2016, 24(6): 6011-6020.

【97】Beier F, Hupel C, Nold J, et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier[J]. Optics Express, 2017, 25(13): 14892-14899.

【98】Ma P F, Tao R M, Su R T, et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4): 4187-4195.

【99】Su R T, Tao R M, Wang X L, et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Physics Letters, 2017, 14(8): 085102.

【100】Liu G B, Yang Y F, Wang J H, et al. SBS enhancement factor improvement in 11.6 GHz linewidth, 1.5 kW Yb-doped fiber amplifier[J]. Chinese Physics Letters, 2016, 33(7): 074207.

【101】Yang Y F, Shen H, Chen X L, et al. 2.5 kW output near diffraction limit obtained by a full-fiberized high-efficiency narrow-linewidth laser[J]. Chinese Journal of Lasers, 2016, 43(4): 0419004.
杨依枫, 沈辉, 陈晓龙, 等. 全光纤化高效率、窄线宽光纤激光器实现2.5 kW近衍射极限输出[J]. 中国激光, 2016, 43(4): 0419004.

【102】Zheng Y, Yang Y F, Zhao X, et al. Research progress on spectral beam combining technology of high power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201002.
郑也, 杨依枫, 赵翔, 等. 高功率光纤激光光谱合成技术的研究进展[J]. 中国激光, 2017, 44(2): 0201002.

【103】Wang Y S, Feng Y J, Wang X J, et al. 6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control[J]. Applied Optics, 2017, 56(10): 2760-2765.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF