首页 > 论文 > Photonics Research > 6卷 > 9期(pp:858-866)

Widely tunable 2.3 μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Heterogeneously integrating III-V materials on silicon photonic integrated circuits has emerged as a promising approach to make advanced laser sources for optical communication and sensing applications. Tunable semiconductor lasers operating in the 2–2.5 μm range are of great interest for industrial and medical applications since many gases (e.g., CO2, CO, CH4) and biomolecules (such as blood glucose) have strong absorption features in this wavelength region. The development of integrated tunable laser sources in this wavelength range enables low-cost and miniature spectroscopic sensors. Here we report heterogeneously integrated widely tunable III-V-on-silicon Vernier lasers using two silicon microring resonators as the wavelength tuning components. The laser has a wavelength tuning range of more than 40 nm near 2.35 μm. By combining two lasers with different distributed Bragg reflectors, a tuning range of more than 70 nm is achieved. Over the whole tuning range, the side-mode suppression ratio is higher than 35 dB. As a proof-of-principle, this III-V-on-silicon Vernier laser is used to measure the absorption lines of CO. The measurement results match very well with the high-resolution transmission molecular absorption (HITRAN) database and indicate that this laser is suitable for broadband spectroscopy.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000858

基金项目:H2020 European Research Council (ERC)10.13039/100010663 (FireSpec); INTERREG (Safeside).

收稿日期:2018-05-23

录用日期:2018-07-02

网络出版日期:2018-07-02

作者单位    点击查看

Ruijun Wang:Photonics Research Group, Ghent University-IMEC, Technologiepark-Zwijnaarde 15, B-9052 Ghent, BelgiumCenter for Nano- and Biophotonics (NB-Photonics), Ghent University, B-9052 Ghent, Belgium
Stephan Sprengel:Walter Schottky Institut, Technische Universit?t München, Am Coulombwall 4, 85748 Garching, Germany
Anton Vasiliev:Photonics Research Group, Ghent University-IMEC, Technologiepark-Zwijnaarde 15, B-9052 Ghent, BelgiumCenter for Nano- and Biophotonics (NB-Photonics), Ghent University, B-9052 Ghent, Belgium
Gerhard Boehm:Walter Schottky Institut, Technische Universit?t München, Am Coulombwall 4, 85748 Garching, Germany
Joris Van Campenhout:IMEC, Kapeldreef 75, Leuven B-3001, Belgium
Guy Lepage:IMEC, Kapeldreef 75, Leuven B-3001, Belgium
Peter Verheyen:IMEC, Kapeldreef 75, Leuven B-3001, Belgium
Roel Baets:Photonics Research Group, Ghent University-IMEC, Technologiepark-Zwijnaarde 15, B-9052 Ghent, BelgiumCenter for Nano- and Biophotonics (NB-Photonics), Ghent University, B-9052 Ghent, Belgium
Markus-Christian Amann:Walter Schottky Institut, Technische Universit?t München, Am Coulombwall 4, 85748 Garching, Germany
Gunther Roelkens:Photonics Research Group, Ghent University-IMEC, Technologiepark-Zwijnaarde 15, B-9052 Ghent, BelgiumCenter for Nano- and Biophotonics (NB-Photonics), Ghent University, B-9052 Ghent, Belgium

联系人作者:Ruijun Wang(Ruijun.Wang@ugent.be)

【1】L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130 , 4–50 (2013).

【2】N. V. Alexeeva, and M. A. Arnold, “Near-infrared microspectroscopic analysis of rat skin tissue heterogeneity in relation to noninvasive glucose sensing,” J. Diabetes Sci. Technol. 3 , 219–232 (2009).

【3】J. Hodgkinson, and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24 , 012004 (2013).

【4】M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. W?chter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90 , 289–300 (2008).

【5】A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9 , 9616–9628 (2009).

【6】A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, and M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 micron vertical-cavity surface-emitting laser,” Opt. Lett. 33 , 1566–1568 (2008).

【7】B. Gerhard, A. Bachmann, J. Rosskopf, M. Ortsiefer, J. Chen, A. Hangauer, R. Meyer, R. Strzoda, and M.-C. Amann, “Comparison of InP-and GaSb-based VCSELs emitting at 2.3??μm suitable for carbon monoxide detection,” J. Cryst. Growth 323 , 442–445 (2011).

【8】J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3??μm with in-line reference cell,” Appl. Phys. B 102 , 381–389 (2011).

【9】X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3??μm tunable diode lasers,” Meas. Sci. Technol. 20 , 115201 (2009).

【10】F. Stritzke, O. Diemel, and S. Wagner, “TDLAS-based NH3 mole fraction measurement for exhaust diagnostics during selective catalytic reduction using a fiber-coupled 2.2-μm DFB diode laser,” Appl. Phys. B 119 , 143–152 (2015).

【11】Vertilas GmbH, “Sensing applications ,” http://www.vertilas.com.

【12】Nanoplus GmbH, “Distributed feedback lasers ,” https://nanoplus.com/en/products/distributed-feedback-lasers.

【13】B. L. Upschulte, D. M. Sonnenfroh, and M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room temperature and combustion gases by use of a broadly current-tuned multi-section InGaAsP diode laser,” Appl. Opt. 38 , 1506–1512 (1999).

【14】D. Weidmann, A. A. Kosterev, F. K. Tittel, N. Ryan, and D. McDonald, “Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 29 , 1837–1839 (2004).

【15】G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92 , 305–311 (2008).

【16】M. von Edlinger, R. Weih, J. Scheuermann, L. N?hle, M. Fischer, J. Koeth, M. Kamp, and S. H?fling, “Monolithic single mode interband cascade lasers with wide wavelength tunability,” Appl. Phys. Lett. 109 , 201109 (2016).

【17】S. Kalchmair, R. Blanchard, T. S. Mansuripur, G.-M. de Naurois, C. Pfluegl, M. F. Witinski, L. Diehl, F. Capasso, and M. Loncar, “High tuning stability of sampled grating quantum cascade lasers,” Opt. Express 23 , 15734–15747 (2015).

【18】K. Vizbaras, E. Dvinelis, I. ?imonyt?, A. Trinkūnas, M. Greibus, R. Songaila, T. ?ukauskas, M. Kau?ylas, and A. Vizbaras, “High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45??μm wavelength range,” Appl. Phys. Lett. 107 , 011103 (2015).

【19】S. Latkowski, A. H?nsel, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. J. A. Thijs, H. P. M. M. Ambrosius, M. K. Smit, K. A. Williams, and E. A. J. M. Bente, “Monolithically integrated widely tunable laser source operating at 2??μm,” Optica 3 , 1412–1417 (2016).

【20】A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3 , 545–551 (2016).

【21】W. Zhou, D. Wu, R. McClintock, S. Slivken, and M. Razeghi, “High performance monolithic, broadly tunable mid-infrared quantum cascade lasers,” Optica 4 , 1228–1231 (2017).

【22】R. Wang, S. Sprengel, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Broad wavelength coverage 2.3??μm III-V-on-silicon DFB laser array,” Optica 4 , 972–975 (2017).

【23】E. J. Stanton, A. Spott, N. Volet, M. L. Davenport, and J. E. Bowers, “High-brightness lasers on silicon by beam combining,” Proc. SPIE 10108 , 101080K (2017).

【24】L. Vivien, and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

【25】Y. Zou, S. Chakravarty, C.-J. Chung, X. Xu, and R. T. Chen, “Mid-infrared silicon photonic waveguides and devices,” Photon. Res. 6 , 254–276 (2018).

【26】H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7 , 393–420 (2017).

【27】L. Tombez, E. J. Zhang, J. S. Orcutt, S. Kamlapurkar, and W. M. J. Green, “Methane absorption spectroscopy on a silicon photonic chip,” Optica 4 , 1322–1325 (2017).

【28】E. M. P. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5 , 1636–1648 (2014).

【29】J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16 , 4296–4301 (2008).

【30】N. Hattasan, B. Kuyken, F. Leo, E. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett. 24 , 1536–1538 (2012).

【31】A. Spott, M. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. Meyer, and J. Bowers, “Heterogeneously integrated 2.0?μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40 , 1480–1483 (2015).

【32】R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M. C. Amann, and G. Roelkens, “2.3??μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24 , 21081–21089 (2016).

【33】R. Wang, A. Malik, I. ?imonyt?, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0×??μm widely tunable external cavity lasers,” Opt. Express 24 , 28977–28986 (2016).

【34】G. Roelkens, A. Abbasi, P. Cardile, U. Dave, A. De Groote, Y. de Koninck, S. Dhoore, X. Fu, A. Gassenq, N. Hattasan, Q. Huang, S. Kumari, S. Keyvaninia, B. Kuyken, L. Li, P. Mechet, M. Muneeb, D. Sanchez, H. Shao, T. Spuesens, A. Subramanian, S. Uvin, M. Tassaert, K. Van Gasse, J. Verbist, R. Wang, Z. Wang, J. Van Campenhout, X. Yin, J. Bauwelinck, G. Morthier, R. Baets, and D. Van Thourhout, “III-V-on-silicon photonic devices for optical communication and sensing,” Photonics 2 , 969–1004 (2015).

【35】A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23 , 8200810 (2017).

【36】R. Wang, M. Muneeb, S. Sprengel, G. Boehm, A. Malik, R. Baets, M.-C. Amann, and G. Roelkens, “III-V-on-silicon 2-μm-wavelength-range wavelength demultiplexers with heterogeneously integrated InP-based type-II photodetectors,” Opt. Express 24 , 8480–8490 (2016).

【37】S. Sprengel, C. Grasse, P. Wiecha, A. Andrejew, T. Gruendl, G. Boehm, R. Meyer, and M.-C. Amann, “InP-based type-II quantum-well lasers and LEDs,” IEEE J. Sel. Top. Quantum Electron. 19 , 1900909 (2013).

【38】G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R. F. Curl, and F. K. Tittel, “Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide,” Appl. Opt. 43 , 6040–6046 (2004).

【39】J. Jágerská, P. Jouy, B. Tuzson, H. Looser, M. Mangold, P. Soltic, A. Hugi, R. Br?nnimann, J. Faist, and L. Emmenegger, “Simultaneous measurement of NO and NO2 by dual-wavelength quantum cascade laser spectroscopy,” Opt. Express 23 , 1512–1522 (2015).

引用该论文

Ruijun Wang, Stephan Sprengel, Anton Vasiliev, Gerhard Boehm, Joris Van Campenhout, Guy Lepage, Peter Verheyen, Roel Baets, Markus-Christian Amann, and Gunther Roelkens, "Widely tunable 2.3 μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing," Photonics Research 6(9), 858-866 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF