首页 > 论文 > 激光与光电子学进展 > 55卷 > 9期(pp:90101--1)

水蒸气中太赫兹波0.6 m行程下的传输特性

Transmission Characteristics of Terahertz Wave in Water Vapor Transmitted 0.6 m

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

频率在0.1~10 THz的太赫兹波具有传输容量大、方向性好、传输效率高等优点。研究其在通信领域的应用, 对满足用户对传输速率越来越高的要求具有重要意义。实验通过太赫兹时域光谱(THz-TDS)系统测得0.1~2.4 THz太赫兹波在不同湿度的空气中传输0.6 m的传输数据, 同时采用Dorney等提出的提取光学常数的经典模型得到延迟时间、功率谱、振幅谱和吸收系数等数据。分析结果表明:大气中的水蒸气对太赫兹波具有明显的吸收衰减作用, 而且湿度越大衰减作用越强, 在吸收峰值处影响更加明显; 同时存在弱衰减作用的透明窗口, 可应用于太赫兹通信。

Abstract

Terahertz wave at frequency range from 0.1 THz to 10 THz has advantages such as large transmission capacity, good direction, high transmission efficiency and so on. Studying the application to the communication field plays a very important role in satisfying the demand of higher transmission rate for users. The terahertz time-domain spectroscopy (THz-TDS) system is used to measure the terahertz wave transmission data from 0.1 THz to 2.4 THz in atmosphere with different humidities for a 0.6 meters transmission distance. And based on the classical model of extracting optical constants proposed by Dorney et. al., the data such as delay time, power spectrum, amplitude spectrum and absorption coefficient are obtained. The results show that the water vapor in the atmosphere has obvious absorption and attenuation effects on terahertz, and the attenuation rises with the increase of humidity, especially in absorption peak. At the same time, there is transparent window of weak attenuation which can be applied to terahertz communication.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.1

DOI:10.3788/lop55.090101

所属栏目:大气光学与海洋光学

基金项目:国家自然科学基金(11176032)、极端条件物质特性联合实验室基金(12zxjk05, 13zxjk02)

收稿日期:2018-01-17

修改稿日期:2018-03-14

网络出版日期:2018-04-02

作者单位    点击查看

李进:西南科技大学工程技术中心, 四川 绵阳 621010
刘泉澄:西南科技大学信息工程学院, 四川 绵阳 621010西南科技大学极端条件物质特性实验室, 四川 绵阳 621010
熊亮:西南科技大学工程技术中心, 四川 绵阳 621010

联系人作者:李进(252067639@qq.com)

【1】Liang H H, Zhang P, Luo X Z. Development of research on characters of sub-millimeter wave propagation[J]. Journal of the Graduates Sun Yat-Sen University (Natural Sciences, Medicine), 2002, 23(2): 32-37.
梁奂晖, 张萍, 罗锡璋. 亚毫米波大气传输特性研究与发展[J]. 中山大学研究生学刊(自然科学、医学版), 2002, 23(2): 32-37.

【2】Pan Y T, Lü J H. Terahertz spectroscopy of the interfacial water in phospholipid membranes[J]. Laser & Optoelectronics Progress, 2017, 54(4): 043001.
潘亚涛, 吕军鸿. 基于太赫兹光谱技术的生物膜界面水研究[J]. 激光与光电子学进展, 2017, 54(4): 043001.

【3】Hewison T J, Cimini D, Martin L, et al. Validating clear air absorption models using ground-based microwave radiometers and vice-versa[J]. Meteorologische Zeitschrift, 2006, 15(1): 27-36.

【4】Suto A K, Nishizawa J I. Developments of terahertz wave generation technologies[J]. Proceedings of SPIE, 2004, 5401: 311-317.

【5】Gamache R R, Kennedy S, Hawkins R, et al. Total internal partition sums for molecules in the terrestrial atmosphere[J]. Journal of Molecular Structure, 2000, 517: 407-425.

【6】Li J S. Simulation research on modulation technology for THz communication system[D]. Changchun: Changchun University of Science and Technology, 2014: 6-25.
李井生. 太赫兹通信系统中调制技术仿真研究[D]. 长春: 长春理工大学, 2014: 6-25.

【7】Zhou Y J, Zhang H, Zhang X N, et al. Experimental research on cigarette humidity and density detection based on terahertz time-domain spectroscopy[J]. Laser & Optoelectronics Progress, 2016, 53(1): 013001.
周永军, 张辉, 张宣妮, 等. 基于太赫兹时域谱烟支湿度密度检测的实验研究[J]. 激光与光电子学进展, 2016, 53(1): 013001.

【8】Yao J Q, Chi N, Yang P F, et al. Study and outlook of terahertz communication technology[J]. Chinese Journal of Lasers, 2009, 36(9): 2213-2233.
姚建铨, 迟楠, 杨鹏飞, 等. 太赫兹通信技术的研究与展望[J]. 中国激光, 2009, 36(9): 2213-2233.

【9】Weber M J, Yang B B, Kulie M S, et al. Atmospheric attenuation of 400 GHz radiation due to water vapor[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(3): 355-360.

【10】Woodward R M, Cole B E, Wallace V P, et al. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue[J]. Physics in Medicine and Biology, 2002, 47(21): 3853-3863.

【11】Meng K, Li Z R, Liu Q. FDTD analysis of terahertz pulse traveling in media[J]. Information and Electronic Engineering, 2011, 9(3): 277-279.
孟坤, 李泽仁, 刘乔. 太赫兹波在介质中传播的FDTD分析[J]. 信息与电子工程, 2011, 9(3): 277-279.

【12】Zhang W T, Wang S Y, Zhan P P, et al. Method of identifying red wood based on terahertz time-domain spectroscopy[J]. Acta Optica Sinica, 2017, 37(2): 0230006.
张文涛, 王思远, 占平平, 等. 基于太赫兹时域光谱技术的红木检测方法[J]. 光学学报, 2017, 37(2): 0230006.

【13】Xin X, Altan H, Saint A, et al. Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature[J]. Journal of Applied Physics, 2006, 100(9): 094905.

【14】Yang Y H, Shutler A, Grischkowsky D. Measurement of the transmission of the atmosphere from 0.2 to 2 THz[J]. Optics Express, 2011,19(9): 8830-8836.

【15】Pardo J R, Cernicharo J, Serabyn E. Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(12): 1683-1694.

【16】Urban J, Baron P, Lautie N, et al. Moliere (v5): a versatile forward and inversion model for the millimeter and sub-millimeter wavelength range[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 83(3/4): 529-554.

【17】Baron P, Mendrok J, Kasai Y, et al. AMATERASU: model for atmospheric TeraHertz radiation analysis and simulation[J]. Journal of the National Institute of Information and Communications Technology, 2008, 55(1): 109-121.

【18】Dorney T D, Baraniuk R G, Mittleman D M. Material parameter estimation with terahertz time-domain spectroscopy[J]. Journal of the Optical Society of America A, 2001, 18(7): 1562-1571.

引用该论文

Li Jin,Liu Quancheng,Xiong Liang. Transmission Characteristics of Terahertz Wave in Water Vapor Transmitted 0.6 m[J]. Laser & Optoelectronics Progress, 2018, 55(9): 090101

李进,刘泉澄,熊亮. 水蒸气中太赫兹波0.6 m行程下的传输特性[J]. 激光与光电子学进展, 2018, 55(9): 090101

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF