首页 > 论文 > 激光与光电子学进展 > 55卷 > 9期(pp:91102--1)

层析成像系统的自适应压缩重构

Adaptive Compression Reconstruction of Tomography System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对多散射多传播路径的射频层析成像稀疏系统出现虚假目标影响图像重构的问题, 提出一种基于子空间追踪的自适应稀疏度重构方法。先根据目标信号自身特点动态调节稀疏度的起始值和步长逼近真实稀疏度, 再利用子空间追踪算法将多路径线性模型的衰减系数稀疏化处理, 并在重构过程中依靠稀疏度估计值更新支撑集, 重构目标图像。与其他重构算法相比, 该方法有效减少虚假目标对图像清晰度的影响, 实现稀疏度未知的层析图像清晰重构。仿真实验分析系统的重构匹配度和虚假目标出现概率, 比较射频传感器在有无噪声下算法的重构性能。实验结果表明, 该算法可准确估计稀疏度, 较低运算量的重构高精度图像, 在射频层析成像其他领域得到较好的应用。

Abstract

The problem of image reconstruction in the sparse system of radio frequency tomography with multiple scattering path is presented, and a self-adaptive sparse reconstruction method based on subspace tracking is proposed. The initial value and step length of the sparse degree are dynamically adjusted according to the characteristics of the target signal. And the attenuation coefficient of multipath linear model is sparse by using the subspace tracking algorithm. In the process of reconstruction, the supporting set is updated by the sparse estimation to reconstruct the target image. Compared with the other reconstruction algorithms, this method can effectively reduce the influence of the ghost on image definition and realize the clear reconstruction of tomography with unknown sparse. The reconstruction of the system and the probability of the ghost are presented. The experimental results show that the proposed algorithm can accurately estimate sparsity and the high precision image with low calculation amount, which can be used in other fields of radio frequency imaging.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/lop55.091102

所属栏目:成像系统

基金项目:国家自然科学基金青年基金(61701211)、辽宁省高校重点实验室资助项目(LJZS007)

收稿日期:2018-02-27

修改稿日期:2018-04-08

网络出版日期:2018-04-23

作者单位    点击查看

高明明:辽宁工程技术大学电子与信息工程学院, 辽宁 葫芦岛 125105
吴月:辽宁工程技术大学电子与信息工程学院, 辽宁 葫芦岛 125105
南敬昌:辽宁工程技术大学电子与信息工程学院, 辽宁 葫芦岛 125105

联系人作者:吴月(1612252170@qq.com)

【1】He Q Y, Li Z L, Wang X Z, et al. Automated retinal layer segmentation method based on optical coherence tomographic images[J]. Acta Optica Sinica, 2016, 36(10): 1011003.
贺琪欲, 李中梁, 王向朝, 等. 基于光学相干层析成像的视网膜图像自动分层方法[J]. 光学学报, 2016, 36(10): 1011003.

【2】Li J L, He B, Liu S, et al. Nondestructive analysis of blue and white porcelain excavated from Nan′ao No.1 shipwreck[J]. Laser & Optoelectronics Progress, 2016, 53(5): 051101.
黎继立, 何斌, 刘松, 等. 南澳一号沉船出水青花瓷的无损分析研究[J]. 激光与光电子学进展, 2016, 53(5): 051101.

【3】Denis S, Berkvens R, Ergeerts G, et al. Combining multiple sub-1 GHz frequencies in radio tomographic imaging[C]∥Proceedings of International Conference on Indoor Positioning and Indoor Navigation, 2016: 1-8.

【4】Smith G E, Mobasseri B G. Analysis and exploitation of multipath ghosts in radar target image classification[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1581-1592.

【5】Yan C S, Liao Y B, Tian Q. Image reconstruction algorithms of computed tomography[J]. Chinese Optics, 2013, 6(5): 617-632.
阎春生, 廖延彪, 田芊. 层析成像图像重建算法综述[J]. 中国光学, 2013, 6(5): 617-632.

【6】Wilson J, Patwari N. Radio tomographic imaging withwireless networks[J]. IEEE Transactions on Mobile Computing, 2010, 9(5): 621-632.

【7】Wang A C, Xiang M S, Wang B N. Differential SAR tomography imaging based on Khatri-Rao subspace and block compressive sensing[J]. Journal of Electronics & Information Technology,2017, 39(1): 95-102.
王爱春, 向茂生, 汪丙南. 一种联合Khatri-Rao子空间与块稀疏压缩感知的差分SAR层析成像方法[J]. 电子与信息学报, 2017, 39(1): 95-102.

【8】Liu K, Yu J J, Huang Q H. Bi-object device-free localization based on compressive sensing[J]. Journal of Electronics & Information Technology, 2014, 36(4): 862-867.
刘凯, 余君君, 黄青华. 基于压缩感知的免携带设备双目标定位算法[J]. 电子与信息学报, 2014, 36(4): 862-867.

【9】Hao X X, Yang Z Y, Guo X M, et al. A method of link selection for radio frequency tomography with Bayesian compressive sensing[J]. Acta Electronica Sinica, 2013, 41(12): 2507-2512.
郝晓曦, 杨志勇, 郭雪梅, 等. BCS实现的射频层析成像链路选择方法[J]. 电子学报, 2013, 41(12): 2507-2512.

【10】Hamilton B R, Ma X L, Baxley R J, et al. Propagation modeling for radio frequency tomography in wireless networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1): 55-65.

【11】Liu Z, Zhang H N, Zhang Y L, et al. Image reconstruction based on weak selected regularized orthogonal match pursuit algorithm[J]. Acta Photonica Sinica, 2012, 41(10): 1217-1221.
刘哲, 张鹤妮, 张永亮, 等. 基于弱选择正则化正交匹配追踪的图像重构算法[J]. 光子学报, 2012, 41(10): 1217-1221.

【12】Fang H, Yang H R. Greedy algorithms and compressed sensing[J]. Acta Automatica Sinica, 2011, 37(12): 1413-1421.
方红, 杨海蓉. 贪婪算法与压缩感知理论[J]. 自动化学报, 2011, 37(12): 1413-1421.

【13】Yang C, Feng W, Feng H, et al. A sparsity adaptive subspace pursuit algorithm for compressive sampling[J]. Acta Electronica Sinica, 2010, 38(8): 1914-1917.
杨成, 冯巍, 冯辉, 等. 一种压缩采样中的稀疏度自适应子空间追踪算法[J]. 电子学报, 2010, 38(8): 1914-1917.

【14】Gao R, Zhao R Z, Hu S H. Variable step size adaptive matching pursuit algorithm for image reconstruction based on compressive sensing[J]. Acta Optica Sinica, 2010, 30(6): 1639-1644.
高睿, 赵瑞珍, 胡绍海. 基于压缩感知的变步长自适应匹配追踪重建算法[J]. 光学学报, 2010, 30(6): 1639-1644.

【15】Xiong W H, Cao J, Li S Q. Sparse signal recovery with unknown signal sparsity[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014: 178.

【16】Chagas R A J, Waldmann J. Theoreticalanalysis of the measurement transportation algorithm to fuse delayed data in distributed sensor networks[J]. IEEE Transactions on Signal and Information Processing over Networks, 2016, 2(3): 246-259.

【17】Zhang S F, Zhu B H, Li R. Compressive imaging method based on CCD image sensor[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111103.
张淑芳, 朱彬华, 李瑞. 基于CCD图像传感器的压缩成像方法[J]. 激光与光电子学进展, 2017, 54(11): 111103.

【18】Li J, Ewing R L, Berdanier C A, et al. Sparse reconstruction of RF tomography with dynamic dictionary[C]∥Proceedings of IEEE National Aerospace and Electronics Conference and Ohio Innovation Summit, 2016: 391-395.

【19】Agrawal P, Patwari N. Correlated link shadow fading in multi-hop wireless networks[J]. IEEE Transactions on Wireless Communications, 2009, 8(8): 4024-4036.

【20】Zhou C M. Research on signal reconstruction algorithms based on compressed sensing[D]. Beijing: Beijing Jiaotong University, 2010.
周灿梅. 基于压缩感知的信号重建算法研究[D]. 北京: 北京交通大学, 2010.

引用该论文

Gao Mingming,Wu Yue,Nan Jingchang. Adaptive Compression Reconstruction of Tomography System[J]. Laser & Optoelectronics Progress, 2018, 55(9): 091102

高明明,吴月,南敬昌. 层析成像系统的自适应压缩重构[J]. 激光与光电子学进展, 2018, 55(9): 091102

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF