首页 > 论文 > 激光与光电子学进展 > 55卷 > 9期(pp:93003--1)

基于激光诱导击穿光谱的脐橙产地鉴别

Origin Identification of Navel Orange Based on Laser Induced Breakdown Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了对脐橙产地进行快速鉴别, 提出了激光诱导击穿光谱(LIBS)全光学诊断方法。选取江西赣州4区县及湖北、四川等6省市共10产地的纽荷尔脐橙, 清洗表皮后直接采集等离子体羽时间演变形貌图及LIBS光谱, 定性分析脐橙产地鉴别的可行性; 采用15点平滑结合多元散射处理(15SM+MSC)预处理脐橙的LIBS光谱, 分别运用主成分分析(PCA)、主成分分析结合多层感知器神经网络(PCA-MLP)鉴别脐橙产地。实验结果显示:采用一定的数据预处理方法结合PCA-MLP对全国7省市大地域范围脐橙产地鉴别的训练集总准确率为97.8%, 预测集总准确率为95.3%; 对赣州4区县小地域范围脐橙产地鉴别的训练集总准确率为100%, 预测集总准确率为96.2%。这说明, 采用合适的数据预处理及分类模型对脐橙产地进行快速鉴别具有一定的可行性。

Abstract

Laser induced breakdown spectroscopy (LIBS) is proposed to discriminate origins of navel oranges. A series of 10 origins of navel oranges which from four counties of Ganzhou in Jiangxi and other six provinces are selected. After cleaning the skin of navel oranges, the images of plasma are collected by ICCD camera and LIBS spectra are obtained by spectrometers to qualitatively analyze the feasibility of origin identification of navel oranges. Furthermore, fifteen points smoothing and multiple scattering correction (15SM+MSC) are utilized to preprocess the LIBS data. And principal component analysis (PCA) and PCA-MLP(multi-layer perceptron) are used to discriminate the origins of navel oranges. The investigation shows that the PCA-MLP model coupled with suitable data processing methods can not only identify origins of navel oranges which from seven provinces in a large area, but also identify origins of navel oranges which from four counties within a small area. The accuracy is 97.8% for origins of navel oranges which from seven provinces by evaluating LIBS spectra in training set, and 95.3% in test set. And the accuracy is 100% for origins of navel oranges which from four counties by evaluating LIBS spectra in training set, and 96.2% in test set. It is potential in differentiating origins of navel oranges by analyzing LIBS spectra.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/lop55.093003

所属栏目:光谱学

基金项目:国家自然科学基金(31460419, 31560482)、江西省科技支撑计划(20151BBG70063)、江西省远航工程计划(20140142)、江西省研究生创新专项资金(YC2017-S177)

收稿日期:2018-03-09

修改稿日期:2018-04-08

网络出版日期:2018-04-15

作者单位    点击查看

饶刚福:江西省果蔬采后处理关键技术及质量安全协同创新中心, 江西 南昌 3300452江西省现代农业装备重点实验室, 江西 南昌 330045
黄林:江西省果蔬采后处理关键技术及质量安全协同创新中心, 江西 南昌 3300452江西省现代农业装备重点实验室, 江西 南昌 330045
刘木华:江西省果蔬采后处理关键技术及质量安全协同创新中心, 江西 南昌 3300452江西省现代农业装备重点实验室, 江西 南昌 330045
陈添兵:江西省果蔬采后处理关键技术及质量安全协同创新中心, 江西 南昌 3300452江西省现代农业装备重点实验室, 江西 南昌 330045
陈金印:江西省果蔬采后处理关键技术及质量安全协同创新中心, 江西 南昌 3300452江西省现代农业装备重点实验室, 江西 南昌 330045
罗子奕:江西省果蔬采后处理关键技术及质量安全协同创新中心, 江西 南昌 3300452江西省现代农业装备重点实验室, 江西 南昌 330045
许方豪:江西省果蔬采后处理关键技术及质量安全协同创新中心, 江西 南昌 3300452江西省现代农业装备重点实验室, 江西 南昌 330045
何秀文:江西省果蔬采后处理关键技术及质量安全协同创新中心, 江西 南昌 3300452江西省现代农业装备重点实验室, 江西 南昌 330045
周华茂:江西省果蔬采后处理关键技术及质量安全协同创新中心, 江西 南昌 3300452江西省现代农业装备重点实验室, 江西 南昌 330045
林金龙:江西省果蔬采后处理关键技术及质量安全协同创新中心, 江西 南昌 3300452江西省现代农业装备重点实验室, 江西 南昌 330045
姚明印:江西省果蔬采后处理关键技术及质量安全协同创新中心, 江西 南昌 3300452江西省现代农业装备重点实验室, 江西 南昌 330045

联系人作者:姚明印(mingyin800@126.com); 饶刚福(1158688677@qq.com);

【1】Wang X X, Gu Z Y, Huang Q. Preliminary research on soil erosion and derived non-point pollution of navel orange orchard[J]. Journal of Central South University of Forestry & Technology, 2015, 35(5): 74-77, 89.
王学雄, 谷战英, 黄齐. 赣南脐橙园水土流失面源污染的初步研究[J]. 中南林业科技大学学报, 2015, 35(5): 74-77, 89.

【2】Huang L L, Huang A M, Zhu J X, et al. Navel orange production and marketing mode in Japan and export opportunity of China analysis[J]. World Agriculture, 2015(11): 165-168.
黄丽莉, 黄爱梅, 祝建新, 等. 日本脐橙产销形势与中国出口机会分析[J], 世界农业, 2015(11): 165-168.

【3】Lu Z J, Zhong B L, Guo H. Discussion on sustainable development of Gannan naval orange industry[J]. Enterprise Economy, 2015, 34(4): 149-152.
卢占军, 钟八莲, 郭慧. 赣南脐橙产业可持续发展的探讨[J]. 企业经济, 2015, 34(4): 149-152.

【4】Deng S H, Huang X B. Research on export of Gannan naval orange based on free trade theory[J]. Prices Monthly, 2017(1): 77-81.
邓淑华, 黄小兵. 基于自由贸易理论的赣南脐橙出口研究[J]. 价格月刊, 2017(1): 77-81.

【5】Chen L D, Zhao Y R. Application of microwave digestion/AAS in detecting crankshaft bearing knock[J]. Spectroscopy and Spectral Analysis, 2014, 34(6): 1683-1687.
陈立旦, 赵艳茹. 微波消解/AAS在发动机曲轴轴承异响检测中的应用[J]. 光谱学与光谱分析, 2014, 34(6):1683-1687.

【6】Fang W P, Meinhardt L W, Tan H W, et al. Identification of the varietal origin of processed loose-leaf tea based on analysis of a single leaf by SNP nanofluidic array[J]. The Crop Journal, 2016, 4(4): 304-312.

【7】Paracchini V, Petrillo M, Lievens A, et al. Novel nuclear barcode regions for the identification of flatfish species[J]. Food Control, 2017, 79: 297-308.

【8】Liu F, Wang Y Z, Yang C Y, et al. Study on the genuineness and producing area of Panax notoginseng based on infrared spectroscopy combined with discriminant analysis[J]. Spectroscopy and Spectral Analysis, 2015, 35(1): 108-112.
刘飞, 王元忠, 杨春艳, 等. 红外光谱结合判别分析对三七道地性及产地的鉴别研究[J]. 光谱学与光谱分析, 2015, 35(1): 108-112.

【9】Borges D L, Guedes S T C D M, Nascimento A R, et al. Detecting and grading severity of bacterial spot caused by Xanthomonas spp. in tomato (Solanum lycopersicon) fields using visible spectrum images[J]. Computers and Electronics in Agriculture, 2016, 125: 149-159.

【10】Yang P, Zhu Y N, Yang X Y, et al. Evaluation of sample preparation methods for rice geographic origin classification using laser-induced breakdown spectroscopy[J]. Journal of Cereal Science, 2018, 80: 111-118.

【11】Qu Y T, Li Y, Guan R Y. Research progress of algae based on laser spectroscopy technology[J]. Laser & Optoelectronics Progress, 2017, 54(6): 060004.
曲颖桐, 李颖, 关冉昀. 激光光谱技术应用于藻类的研究进展[J]. 激光与光电子学进展, 2017, 54(6): 060004.

【12】Chen N, Liu Y X, Du S Z, et al. Research progress in applications of nanosecond and femtosecond laser-induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050003.
陈娜, 刘尧香, 杜盛喆, 等. 纳秒、飞秒激光诱导击穿光谱技术的应用研究进展[J]. 激光与光电子学进展, 2016, 53(5): 050003.

【13】Wang J M, Yan H Y, Zheng P C, et al. Quantitative detection of nutrient elements in soil based on laser induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(11): 1111001.
王金梅, 颜海英, 郑培超, 等. 基于激光诱导击穿光谱定量检测土壤中营养元素的研究[J]. 中国激光, 2017, 44(11): 1111001.

【14】Guo L B, Hao Z Q, Shen M, et al. Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy[J]. Optics Express, 2013, 21(15): 18188-18195.

【15】Bilge G, Velioglu H M, Sezer B, et al. Identification of meat species by using laser-induced breakdown spectroscopy[J]. Meat Science, 2016, 119: 118-122.

【16】Tian Y, Yan C H, Zhang T L, et al. Classification of wines according to their production regions with the contained trace elements using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B, 2017, 135: 91-101.

【17】Malenfant D J, Gillies D J, Rehse S J. Bacterial suspensions deposited on microbiological filter material for rapid laser-induced breakdown spectroscopy identification[J]. Applied Spectroscopy, 2016, 70(3): 485-493.

【18】Huang L, Yao M Y, Lin J L, et al. Determination of cadmium in Gannan navel orange using laser-induced breakdown spectroscopy coupled with partial least squares calibration model[J]. Journal of Applied Spectroscopy, 2014, 80(6): 957-961.

引用该论文

Rao Gangfu,Huang Lin,Liu Muhua,Chen Tianbing,Chen Jinyin,Luo Ziyi,Xu Fanghao,He Xiuwen,Zhou Huamao,Lin Jinlong,Yao Mingyin. Origin Identification of Navel Orange Based on Laser Induced Breakdown Spectroscopy[J]. Laser & Optoelectronics Progress, 2018, 55(9): 093003

饶刚福,黄林,刘木华,陈添兵,陈金印,罗子奕,许方豪,何秀文,周华茂,林金龙,姚明印. 基于激光诱导击穿光谱的脐橙产地鉴别[J]. 激光与光电子学进展, 2018, 55(9): 093003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF