首页 > 论文 > Photonics Research > 8卷 > 9期(pp:1496-1505)

Self-powered electronic paper with energy supplies and information inputs solely from mechanical motions

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

The electronic paper (E-paper) displays features such as flexibility, sunlight visibility, and low power consumption, which makes it ideal for Internet of Things (IoT) applications where the goal is to eliminate bulky power modules. Here, we report a unique self-powered E-paper (SPEP), where information inputs and energy supplies are all converted from mechanical motion by a triboelectric nanogenerator (TENG). The operation of an electrophoretic E-paper is first investigated, identifying the current density as a determinative parameter for driving pigment particle motion and color change. Electrical and optical responses of the E-paper driven by a sliding-mode TENG are then found to be consistent with that under a current source mode. All-in-one monochromic and chromatic SPEPs integrated with a flexible transparent TENG are finally demonstrated, and a pixelated SPEP is discussed for future research. The sliding-driven mechanism of SPEP allows for a potential handwriting function, is free of an extra power supply, and promises undoubtedly a wide range of future applications.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.394044

所属栏目:Optoelectronics

基金项目:Key-Area Research and Development Program of Guangdong Province; National Key Research and Development Program of China10.13039/501100012166; National Natural Science Foundation of China10.13039/501100001809; Youth Innovation Promotion Association of CAS;

收稿日期:2020-04-08

录用日期:2020-07-06

网络出版日期:2020-07-07

作者单位    点击查看

Yifan Gu:State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
Tingting Hou:CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China;School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Peng Chen:State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
Jinxin Cao:State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
Chongxiang Pan:CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China;Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
Weiguo Hu:CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China;School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China;Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
Bo-Ru Yang:State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China;e-mail: yangboru@mail.sysu.edu.cn
Xiong Pu:CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China;School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China;Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China;e-mail: puxiong@binn.cas.cn
Zhong Lin Wang:CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China;School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China;Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China;School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;e-mail: zlwang@gatech.edu

联系人作者:Bo-Ru Yang(yangboru@mail.sysu.edu.cn); Xiong Pu(puxiong@binn.cas.cn); Zhong Lin (zlwang@gatech.edu);

备注:Key-Area Research and Development Program of Guangdong Province; National Key Research and Development Program of China10.13039/501100012166; National Natural Science Foundation of China10.13039/501100001809; Youth Innovation Promotion Association of CAS;

【1】Z. L. WangZ. L. Wang. On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today. 20, 74-82(2017).

【2】Z. L. WangZ. L. Wang. Entropy theory of distributed energy for internet of things. Nano Energy. 58, 669-672(2019).

【3】J. Heikenfeld, P. Drzaic, J.-S. Yeo and T. Koch. Review paper: a critical review of the present and future prospects for electronic paper. J. Soc. Inf. Display. 19, 129-156(2011).

【4】P. P. Yin, G. Wu, W. L. Qin, X. Q. Chen, M. Wang and H. Z. Chen. CYM and RGB colored electronic inks based on silica-coated organic pigments for full-color electrophoretic displays. J. Mater. Chem. C. 1, 843-849(2013).

【5】I. D. MorrisonI. D. Morrison. Electrical charges in nonaqueous media. Colloid Surf. A. 71, 1-37(1993).

【6】Y. Rong, H. Z. Chen, H. Y. Li and M. Wang. Encapsulation of titanium dioxide particles by polystyrene via radical polymerization. Colloid Surf. A. 253, 193-197(2005).

【7】C. Schreuer, S. Vandewiele, T. Brans, F. Strubbe, K. Neyts and F. Beunis. Single charging events on colloidal particles in a nonpolar liquid with surfactant. J. Appl. Phys. 123, (2018).

【8】W.-C. Kao, W.-T. Chang and J.-A. Ye. Driving waveform design based on response latency analysis of electrophoretic displays. J. Display Technol. 8, 596-601(2012).

【9】W. C. Kao and J. C. Tsai. Driving method of three-particle electrophoretic displays. IEEE Trans. Electron Devices. 65, 1023-1028(2018).

【10】S. T. Shen, Y. X. Gong, M. L. Jin, Z. B. Yan, C. Xu, Z. C. Yi, G. F. Zhou and L. L. Shui. Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design. Micromachines. 9, 143-154(2018).

【11】M. Wang, C. Lin, H. Du, H. Zang and M. McCreary. 59.1: Invited paper: electrophoretic display platform comprising B, W, R particles. SID Symposium Digest of Technical Papers. 45, 857-860(2014).

【12】F.-R. Fan, Z.-Q. Tian and Z. L. Wang. Flexible triboelectric generator. Nano Energy. 1, 328-334(2012).

【13】Z. L. WangZ. L. Wang. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano. 7, 9533-9557(2013).

【14】H. Askari, A. Khajepour, M. B. Khamesee, Z. Saadatnia and Z. L. Wang. Piezoelectric and triboelectric nanogenerators: trends and impacts. Nano Today. 22, 10-13(2018).

【15】Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu and Z. L. Wang. Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano. 10, 4797-4805(2016).

【16】Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu and Z. L. Wang. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26, 6599-6607(2014).

【17】J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.-F. Lin and P. S. Lee. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat. Commun. 9, (2018).

【18】R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim and S.-W. Kim. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science. 365, 491-494(2019).

【19】Q. Shi, Z. Zhang, T. Chen and C. Lee. Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch. Nano Energy. 62, 355-366(2019).

【20】F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang and Z. L. Wang. Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics. ACS Nano. 10, 6519-6525(2016).

【21】D. W. Kim, S.-W. Kim and U. Jeong. Lipids: source of static electricity of regenerative natural substances and nondestructive energy harvesting. Adv. Mater. 30, (2018).

【22】W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu and Z. L. Wang. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 10, (2019).

【23】M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li and L. Jiang. 3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience. Adv. Mater. 31, (2019).

【24】X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu and Z. L. Wang. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3, (2017).

【25】F. R. Fan, W. Tang and Z. L. Wang. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28, 4283-4305(2016).

【26】K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong and P. S. Lee. Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat. Commun. 10, (2019).

【27】Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu and Z. L. Wang. Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification. ACS Nano. 13, 8936-8945(2019).

【28】T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean and C. Lee. Self-powered glove-based intuitive interface for diversified control applications in real/cyber space. Nano Energy. 58, 641-651(2019).

【29】G. Khandelwal, T. Minocha, S. K. Yadav, A. Chandrasekhar, N. P. Maria Joseph Raj, S. C. Gupta and S.-J. Kim. All edible materials derived biocompatible and biodegradable triboelectric nanogenerator. Nano Energy. 65, (2019).

【30】M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin and S. Park. Triboelectric series of 2D layered materials. Adv. Mater. 30, (2018).

【31】W. Gong, C. Hou, J. Zhou, Y. Guo, W. Zhang, Y. Li, Q. Zhang and H. Wang. Continuous and scalable manufacture of amphibious energy yarns and textiles. Nat. Commun. 10, (2019).

【32】C. Garcia, I. Trendafilova and J. Sanchez del Rio. Detection and measurement of impacts in composite structures using a self-powered triboelectric sensor. Nano Energy. 56, 443-453(2019).

【33】S. Parandeh, M. Kharaziha and F. Karimzadeh. An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper. Nano Energy. 59, 412-421(2019).

【34】L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee and S. Soh. Controlling surface charge generated by contact electrification: strategies and applications. Adv. Mater. 30, (2018).

【35】F. Ershad, K. Sim, A. Thukral, Y. S. Zhang and C. Yu. Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment. APL Mater. 7, (2019).

【36】Q. Shi, T. He and C. Lee. More than energy harvesting—combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy. 57, 851-871(2019).

【37】H. Fang, H. Tian, J. Li, Q. Li, J. Dai, T.-L. Ren, G. Dong and Q. Yan. Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence. Nano Energy. 20, 48-56(2016).

【38】X. Y. Wei, X. Wang, S. Y. Kuang, L. Su, H. Y. Li, Y. Wang, C. Pan, Z. L. Wang and G. Zhu. Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing. Adv. Mater. 28, 6656-6664(2016).

【39】X. Y. Wei, L. Liu, H. L. Wang, S. Y. Kuang, X. Zhu, Z. L. Wang, Y. Zhang and G. Zhu. High-intensity triboelectrification-induced electroluminescence by microsized contacts for self-powered display and illumination. Adv. Mater. Interfaces. 5, (2018).

【40】Z. L. Wang, J. Chen and L. Lin. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250-2282(2015).

【41】T. Bert, F. Beunis, H. D. Smet and K. Neyts. Steady state current in EPIDs. Displays. 27, 35-38(2006).

【42】R. M. WebberR. M. Webber. 10.4: Image stability in active-matrix microencapsulated electrophoretic displays. SID Symposium Digest of Technical Papers. 33, 126-129(2002).

【43】C. Zhang, W. Tang, C. Han, F. Fan and Z. L. Wang. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26, 3580-3591(2014).

【44】T. Bert and H. De Smet. The microscopic physics of electronic paper revealed. Displays. 24, 103-110(2003).

【45】S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu and Z. L. Wang. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25, 6184-6193(2013).

【46】X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu and Z. L. Wang. Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells. Adv. Energy Mater. 6, (2016).

【47】Z. L. Wang and A. C. Wang. On the origin of contact-electrification. Mater. Today. 30, 34-51(2019).

引用该论文

Yifan Gu, Tingting Hou, Peng Chen, Jinxin Cao, Chongxiang Pan, Weiguo Hu, Bo-Ru Yang, Xiong Pu, and Zhong Lin Wang, "Self-powered electronic paper with energy supplies and information inputs solely from mechanical motions," Photonics Research 8(9), 1496-1505 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF