首页 > 论文 > Photonic Sensors > 8卷 > 4期(pp:367-374)

Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

A refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and dual side rings resonators is proposed. The sensing properties are numerically simulated by the finite element method (FEM). For the interaction of the narrow-band spectral response and the broadband spectral response caused by the side-coupled resonators and the rectangular resonator, respectively, the transmission spectra exhibit a sharp and asymmetric profile. Results are analyzed using the coupled-mode theory based on the transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift. Through the optimization of structural parameters, we achieve a theoretical value of the refractive index sensitivity (S) as high as 1160 nm/RIU, and the corresponding sensing resolution is 8.62 × 10-5 RIU. In addition, the coupled MIM waveguide structure can be easily extended to other similar compact structures to realize the sensing task and integrated with other photonic devices at the chip scale. This work paves the way toward the sensitive nanometer scale refractive index sensor for design and application.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1007/s13320-018-0509-6

所属栏目:Regular

基金项目:The authors thank Xiangxian WANG from the School of Science, Lanzhou University of Technology, Lanzhou, China for their discussions to this research. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61367005 and 74011119) and the Natural Science Foundation of Gansu Province (Grant No. 17JR5RA078).

收稿日期:2018-05-21

修改稿日期:2018-07-09

网络出版日期:--

作者单位    点击查看

Xuewei ZHANG:Engineering Research Center of Gansu Province for Intelligent Information Technology and Application, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Yunping QI:Engineering Research Center of Gansu Province for Intelligent Information Technology and Application, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Peiyang ZHOU:Engineering Research Center of Gansu Province for Intelligent Information Technology and Application, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Hanhan GONG:Engineering Research Center of Gansu Province for Intelligent Information Technology and Application, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Bingbing HU:Engineering Research Center of Gansu Province for Intelligent Information Technology and Application, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Chunman YAN:Engineering Research Center of Gansu Province for Intelligent Information Technology and Application, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China

联系人作者:Yunping QI(yunpqi@126.com)

【1】V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. G. Martin, et al., “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nature Photonics, 2010, 4(2): 107–111.

【2】S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature, 2006, 440(7083): 508-511.

【3】H. Lu, X. M. Liu, D. Mao, and G. X. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Optics Letters, 2012, 37(18): 3780-3782.

【4】C. Zhao and Y. Li, “Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics Journal, 2014, 6(6): 4802208-1-4802208-8.

【5】N. Park, S. Yu, and X. Piao, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Optics Express, 2012, 20(17): 18994-18999.

【6】D. M. Becerra, J. B. G. Díaz, V. V. Temnov, A. Cebollada, G. Armelles, T. Thomay, et al., “Enhancement of the magnetic modulation of surface plasmon polaritons in Au/Co/Au films,” Applied Physics Letter, 2010, 97(18): 183114-1-183114-3.

【7】K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual Fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics, 2016, 11(1): 315-321.

【8】H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors, 2010, 10(11): 9630-9646.

【9】W. S. Yue, Z. H. Wang, Y. Yang, L. Q. Chen, A. Syed, K. Wang, et al., “Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering,” Journal of Micro-Mechanics & Microengineering, 2012, 22(12): 125007-1-125007-9.

【10】B. Ni, X. Y. Chen, D. Y. Xiong, H. Liu, G. H. Hua, J. H. Chang, et al., “Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of Electronics, 2015, 47(6): 1339-1346.

【11】R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nature Photonics, 2007, 1(6): 303-305.

【12】L. J. Liu, S. L. He, and Z. H. Han, “Novel surface plasmon waveguide for high integration,” Optics Express, 2005, 13(17): 6645-6650.

【13】Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Optics Express, 2009, 17(9): 7533-7539.

【14】G. X. Wang, H. Lu, and X. M. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Optics Express, 2012, 20(19): 20902-20907.

【15】J. J. Chen, Z. Li, S. Yue, J. H. Xiao, and Q. H. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Letters, 2012, 12(5): 2494-2498.

【16】J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Optics Express, 2008, 16(1): 413-425.

【17】H. W. Zhao, “Surface plasmon polaritons based optical directional coupler,” Science in China, 2008, 40(10): 3025-3029.

【18】P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nature Materials, 2014, 13(5): 471-475.

【19】M. J. Sung, “Approach the angular sensitivity limit in surface plasmon resonance sensors with low index prism and large resonant angle,” Optical Engineering, 2010, 49(49): 054403-1-054403-6.

【20】Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, et al., “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nature Communications, 2013, 4(4): 3381-1-3381-9.

【21】Y. Tang, Z. D. Zhang, R. B. Wang, Z. Y. Hai, C. Y. Cue, W. D. Zhang, et al., “Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators,” Sensors, 2017, 17(4): 784-1-784-8

【22】W. Wei, X. Zhang, and X. M. Ren, “Plasmonic circular resonators for refractive index sensors and filters,” Nanoscale Research Letters, 2015, 10(1): 1-6.

【23】H. F. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Applied Optics, 2007, 46(12): 2229-2233.

【24】Z. D. Zhang, L. Liang, C. Y. Xue, W. D. Zhang, and S. B. Yan, “Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors,” Sensors, 2016, 16(5): 642-1-642-10.

【25】R. D. Kekatpure, A. C. Hryciw, E. S. Barnard, and M. L. Brongersma, “Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator,” Optics Express, 2009, 17(26): 24112-24129.

【26】J. H. Zhu, Q. J. Wang, P. Shum, and X. G. Huang, “A simple nanometeric plasmonic narrow-band filter structure based on metal-insulator-metal waveguide,” IEEE Transactions on Nanotechnology, 2011, 10(6): 1371-1376.

【27】F. F. Hu, H. X. Yi, and Z. P. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Optics Letters, 2011, 36(8): 1500-1502.

【28】Q. Li, T. Wang, Y. K. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Optics Express, 2010, 18(8): 8367-8382.

【29】X. J. Piao, S. Yu, S. Koo, K. Lee, and N. Park, “Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures,” Optics Express, 2011, 19(11): 10907-10912.

【30】R. Ameling, L. Langguth, M. Hentschel, and M. Mesch, “Cavity-enhanced localized plasmon resonance sensing,” Applied Physics Letters, 2010, 97(25): 253116-1-253116-3.

引用该论文

Xuewei ZHANG,Yunping QI,Peiyang ZHOU,Hanhan GONG,Bingbing HU,Chunman YAN. Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators[J]. Photonic Sensors, 2018, 8(4): 367-374

Xuewei ZHANG,Yunping QI,Peiyang ZHOU,Hanhan GONG,Bingbing HU,Chunman YAN. Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators[J]. Photonic Sensors, 2018, 8(4): 367-374

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF