首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1001002--1)

转塔气动光学效应时空特性

Space-Time Characteristics of the Aero-Optical Effect Around Turrets

董航   徐明  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过对相同马赫数、相近雷诺数、不同转塔口径(400 mm和2000 mm)的绕流流场模拟和气动光学效应进行分析,给出了不同发射方向时气动光学效应导致的光束倾斜角和光束质量因子的时间变化特性、统计特性以及时间相关特性。结果指出:多数场景下气动光学效应中平均流场效应占主要部分,平均流场效应的特征频率由绕流流场的特征频率决定。尺寸效应的研究表明:缩比实验可以有效模拟实际飞行状态下气动光学效应的统计特性,但无法准确模拟其时间相关特性。开展了前向发射时发射方向的优化选择,指出发射方向在中轴线上天顶角约为40°时,气动光学效应导致的波前畸变统计值和涨落值最小。分析了前向发射时发射口径的影响,指出发射光束半径增加会导致平均流场效应快速增加,但湍流效应基本不变。

Abstract

This study simulated the aero-optical effect of beams with different projection directions around turrets with different radii (400 mm and 2000 mm). The Mach number was fixed, and the Reynolds number remained similar in all cases. The space-time characteristic of the beam quality factor and beam tilt angle caused by the aero-optical effect was comprehensively studied. The aero-optical effect was mainly determined based on the mean flow effect, and the characteristic frequency of the mean flow effect was determined based on that of the flow around the turret. The spatial characteristic of the aero-optical effect was accurately reproduced in the reduced-scale experiments; however, the temporal characteristic was poorly simulated. The aero-optical effect appeared to be minimized at a projection direction of 40° zenith in the forward direction. An increase in the projection radius resulted in an increase in the mean flow effect while maintaining the turbulent effect almost constant.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201838.1001002

所属栏目:大气光学与海洋光学

收稿日期:2017-12-21

修改稿日期:2018-02-02

网络出版日期:2018-05-02

作者单位    点击查看

董航:北京应用物理与计算数学研究所, 北京100094
徐明:北京应用物理与计算数学研究所, 北京100094

联系人作者:徐明(xu_ming@iapcm.ac.cn)

【1】Gordeyev S, Jumper E. Fluid dynamics and aero-optics of turrets[J]. Progress in Aerospace Sciences, 2010, 46(8): 388-400.

【2】Jelic R, Sherer S, Greendyke R. Simulation of various turret configurations at subsonic and transonic flight conditions using OVERFLOW[C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, January 9-12, 2012, Nashville, Tennessee. Palo Alto: AAIA, 2012: 0464.

【3】de Lucca N, Gordeyev S, Jumper E. Comparison of aero-optical measurements from the flight test of full and hemispherical turrets on the airborne aero-optics laboratory[C]∥43rd AIAA Plasmadynamics and Lasers Conference, June 25-28, 2012, New Orleans, Louisiana. Palo Alto: AAIA, 2012: 2985.

【4】Nahrstedt D, Hsia Y C, Jumper E, et al. Wind tunnel validation of computational fluid dynamics-based aero-optics model[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2009, 223(4): 393-406.

【5】Gordeyev S, Jumper E, Vukasinovic B, et al. fluidic control of a turret wake, part Ⅱ: aero-optical effects[C]∥47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, January 5-8, 2009, Orlando, Florida. Palo Alto: AAIA, 2009: 817.

【6】Cress J, Gordeyev S, Jumper E, et al. Similarities and differences in aero-optical structure over cylindrical and hemispherical turrets with a flat window[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit, January 8-11, 2007, Reno, Nevada. Palo Alto: AAIA, 2007: 326.

【7】Vukasinovic B, Glezer A, Gordeyev S, et al. Active control and optical diagnostics of the flow over a hemispherical turret[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit, January 7-10, 2008, Reno, Nevada. Palo Alto: AAIA, 2008: 598.

【8】de Lucca N, Gordeyev S, Jumper E, et al. Aero-optical environment around turrets at forward -viewing angles[C]∥51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, January 7-10, Grapevine, Texas. Palo Alto: AAIA, 2013: 0721.

【9】Xie W K, Ma H T, Gao Q, et al. Research advances in aero-optics adaptive correction[J]. Laser & Optoelectronics Progress, 2014, 51(9): 090001.
谢文科, 马浩统, 高穹, 等. 气动光学自适应校正研究进展[J]. 激光与光电子学进展, 2014, 51(9): 090001.

【10】Dong H, Zhang J Z, Xu M. Simulation on mean flow-field aero-optic effect of airborne optical platform[J]. Acta Optica Sinica, 2012, 32(2): 0201003.
董航, 张建柱, 徐明. 机载光学平台平均流场气动光学效应研究[J]. 光学学报, 2012, 32(2): 0201003.

【11】Dong H. Simulation on time-dependent aero-optic effects of mean flow field[J]. Acta Optica Sinica, 2012, 32(12): 1201004.
董航. 气动光学平均流场效应时间特性研究[J]. 光学学报, 2012, 32(12): 1201004.

【12】National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, Department of the Air Force. Standard atmosphere (USA 1976)[M]. Beijing: Science Press, 1982.
美国国家海洋和大气管理局, 国家航空航天局, 美国空军部. 标准大气(美国1976)[M]. 北京: 科学出版社, 1982.

【13】Vukasinovic B, Glezer A, Gordeyev S, et al. Fluidic control of a turret wake: aerodynamic and aero-optical effects[J]. AIAA Journal, 2010, 48(8): 1686-1699.

引用该论文

Dong Hang,Xu Ming. Space-Time Characteristics of the Aero-Optical Effect Around Turrets[J]. Acta Optica Sinica, 2018, 38(10): 1001002

董航,徐明. 转塔气动光学效应时空特性[J]. 光学学报, 2018, 38(10): 1001002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF