首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1017003--1)

基于低秩矩阵填充的背景荧光噪声抑制方法

Low-Rank-Matrix-Completion-Based Method for Suppressing Background Fluorescence

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在面向精准医疗的分子影像领域,荧光分子断层成像(FMT)是当前的研究热点之一。由于FMT逆问题严重的病态性,背景荧光噪声会对重建结果产生严重的负面影响。在深入研究基于有限元的FMT重建方法的基础上,提出利用低秩矩阵填充技术克服背景荧光的方法。该方法将不同激发节点形成的外表面观测组成一个有元素缺失的观测矩阵,利用低秩矩阵填充算法恢复该矩阵的缺失元素,同时抑制观测矩阵含有的背景荧光噪声。利用去噪后的观测矩阵建立了新的FMT逆问题模型,并利用其对荧光目标进行重建。单荧光和双荧光目标重建实验表明:基于去噪后FMT逆问题模型的重建结果获得了显著改善。

Abstract

Fluorescence molecular tomography (FMT) is a hot research topic in molecular imaging applied to precision medicine. Due to the seriously ill posed FMT inverse problem, background fluorescence noise often degrades FMT reconstruction results greatly. After analyzing FMT reconstruction methods based on the finite element method, we propose a method for suppressing background fluorescence using low rank matrix completion technology. The proposed method builds an incomplete boundary observation matrix which columns correspond to different excitation sources. Then, a low rank matrix completion algorithm is employed to complete the matrix and suppress the background fluorescence. At last, a new FMT inverse problem is formed by the denoised boundary observation matrix, with which the fluorescent targets are reconstructed. The new FMT inverse problem is applied to reconstruct single and double fluorescent targets, numerical experiments illustrate that the reconstruction results are improved greatly.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/aos201838.1017003

所属栏目:医用光学与生物技术

基金项目:国家自然科学基金(61731015,61673319,11571012,61640418)、陕西省国际合作项目(2013KW04-04)

收稿日期:2018-01-08

修改稿日期:2018-04-23

网络出版日期:2018-04-28

作者单位    点击查看

王晓东:西北大学信息科学与技术学院, 陕西 西安 710127
耿国华:西北大学信息科学与技术学院, 陕西 西安 710127
易黄建:西北大学信息科学与技术学院, 陕西 西安 710127
何雪磊:西北大学信息科学与技术学院, 陕西 西安 710127
贺小伟:西北大学信息科学与技术学院, 陕西 西安 710127

联系人作者:耿国华(ghgeng@nwu.edu.cn); 王晓东(Xiaodong_Wang_1801@163.com);

【1】Zhang J, Shi J, Guang H, et al. Iterative correction scheme based on discrete cosine transform and L1 regularization for fluorescence molecular tomography with background fluorescence[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(6): 1107-1115.

【2】Gao M, Lewis G, Turner G M, et al. Effects of background fluorescence in fluorescence molecular tomography[J]. Applied Optics, 2005, 44(26): 5468-5474.

【3】Soubret A, Ntziachristos V. Fluorescence molecular tomography in the presence of background fluorescence[J]. Physics in Medicine & Biology, 2006, 51(16): 3983-4001.

【4】Ale A, Ermolayev V, Deliolanis N, et al. Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/X-ray computed tomography imaging of a mouse model of early stage lung cancer[J]. Journal of Biomedical Optics, 2013, 18(5): 056006.

【5】Qin B J, Hu C, Huang S S. Target/background classification regularized nonnegative matrix factorization for fluorescence unmixing[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(4): 874-889.

【6】Xu H, Rice B. In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique[J]. Journal of Biomedical Optics, 2009, 14(6): 064011.

【7】Plaza J, Hendrix E M T, Garcia I, et al. On endmember identification in hyperspectral images without pure pixels: a comparison of algorithms[J]. Journal of Mathematical Imaging and Vision, 2012, 42(2/3): 163-175.

【8】Pu H S, Zhang G L, He W, et al. Resolving fluorophores by unmixing multispectral fluorescence tomography with independent component analysis[J]. Physics in Medicine & Biology, 2014, 59(17): 5025-5042.

【9】Han D, Yang X, Liu K, et al. Efficient reconstruction method for L1 regularization in fluorescence molecular tomography[J]. Applied Optics, 2010, 49(36): 6930-6937.

【10】Chen X L, Yang D F, Zhang Q T, et al. L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography[J]. Journal of Applied Physics, 2014, 115(18): 184702.

【11】Ntziachristos V. Fluorescence molecular imaging[J]. Annual Review of Biomedical Engineering, 2006, 8(1): 1-33.

【12】Cong A, Wang G. A finite-element-based reconstruction method for 3D fluorescence tomography[J]. Optics Express, 2005, 13(24): 9847-9857.

【13】Wang D F, Liu Y, Chen Y P. A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(5): 766-773.

【14】Cong W, Wang G, Kumar D, et al. Practical reconstruction method for bioluminescence tomography[J]. Optics Express, 2005, 13(18): 6756-6771.

【15】Yi H J. Regularization based reconstruction algorithms for fluorescence molecular tomography[D]. Xi’an: Xidian University, 2013: 15-31.
易黄建. 基于正则化的荧光分子断层成像重建方法研究[D]. 西安: 西安电子科技大学, 2013: 15-31.

【16】Liu P, Lewis J, Rhee T. Low-rank matrix completion to reconstruct incomplete rendering images[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 24(8): 2353-2365.

【17】Bhaskar S. Probabilistic low-rank matrix completion from quantized measurements[J]. Journal of Machine Learning Research, 2016, 17(1): 1-34.

【18】Wang Z, Lai M J, Lu Z S, et al. Orthogonal rank-one matrix pursuit for low rank matrix completion[J]. SIAM Journal on Scientific Computing, 2015, 37(1): A488-A514.

【19】Dogdas B, Stout D, Chatziioannou A, et al. Digimouse: a 3D whole body mouse atlas from CT and cryosection data[J]. Physics in Medicine & Biology, 2007, 52(3): 577-587.

【20】He X L, Wang X D, Yi H J, et al. Laplacian manifold regularization method for fluorescence molecular tomography[J]. Journal of Biomedical Optics, 2017, 22(4): 045009.

【21】Zhang X F, Badea C T, Johnson G A. Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy[J]. Journal of Biomedical Optics, 2009, 14(6): 064010.

【22】Shi J W, Liu F, Zhang G L, et al. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm[J]. Journal of Biomedical Optics, 2014, 19(4): 046018.

【23】Ye J Z, Chi C W, Xue Z W, et al. Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method[J]. Biomedical Optics Express, 2014, 5(2): 387-406.

【24】Guo H B, Yu J J, He X W, et al. Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization[J]. Biomedical Optics Express, 2015, 6(5): 1648-1664.

【25】Feng J C, Qin C H, Jia K B, et al. Total variation regularization for bioluminescence tomography with the split Bregman method[J]. Applied Optics, 2012, 51(19): 4501-4512.

【26】Zhang H B, Geng G H, Zhao Y C, et al. Nonconvex L1-2 regularization for fast cone-beam X-ray luminescence computed tomography[J]. Acta Optica Sinica, 2017, 37(6): 0617001.
张海波, 耿国华, 赵映程, 等. 基于非凸L1-2正则子的锥束X射线发光断层成像[J]. 光学学报, 2017, 37(6): 0617001.

【27】He X W, Liang J M, Wang X R, et al. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method[J]. Optics Express, 2010, 18(24): 24825-24841.

【28】Wang X D, Liu F, Jiao L C, et al. Incomplete variables truncated conjugate gradient method for signal reconstruction in compressed sensing[J]. Information Sciences, 2014, 288: 387-411.

【29】Zhang H, Geng G, Wang X, et al. Fast and robust reconstruction for fluorescence molecular tomography via L1-2 regularization[J]. BioMed Research International, 2016, 2016: 5065217.

【30】Liu M, Guo H, Liu H, et al. In vivo pentamodal tomographic imaging for small animals[J]. Biomedical Optics Express, 2017, 8(3): 1356-1371.

【31】Zhang X, Yi H J, Hou Y Q, et al. Fast reconstruction in fluorescence molecular tomography based on locality preserving projections[J]. Acta Optica Sinica, 2016, 36(7): 0717001.
张旭, 易黄建, 侯榆青, 等. 基于局部保留投影的荧光分子断层成像快速重建[J]. 光学学报, 2016, 36(7): 0717001.

【32】Song X M, Pogue B W, Jiang S D, et al. Automated region detection based on the contrast-to-noise ratio in near-infrared tomography[J]. Applied Optics, 2004, 43(5): 1053-1062.

引用该论文

Wang Xiaodong,Geng Guohua,Yi Huangjian,He Xuelei,He Xiaowei. Low-Rank-Matrix-Completion-Based Method for Suppressing Background Fluorescence[J]. Acta Optica Sinica, 2018, 38(10): 1017003

王晓东,耿国华,易黄建,何雪磊,贺小伟. 基于低秩矩阵填充的背景荧光噪声抑制方法[J]. 光学学报, 2018, 38(10): 1017003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF