首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1010004--1)

基于深度特征的快速人脸图像检索方法

Fast Face Image Retrieval Based on Depth Feature

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对计算机视觉领域的人脸图像检索问题,提出了一种基于深度特征的快速人脸图像检索方法。该方法首先使用人脸图像训练集对深度卷积神经网络模型进行人脸分类训练;在此基础上采用三元组损失方法对已训练好的人脸分类网络模型进行微调,使得网络能够更加有效地提取人脸特征构建高效的特征向量进行人脸检索初步过滤;最后,为了进一步提高系统检索性能,提出一阶段查询扩展方法对待检索人脸图像特征向量进行融合加强。在两个公用人脸数据集(CASIA-3D FaceV1和Labeled Faces in the Wild dataset)上进行详尽的实验验证,结果表明,基于深度特征的人脸图像检索方法不仅能够显著提高检索结果的准确率,而且该方法简单可靠,能够快速地实现人脸检索任务。

Abstract

In order to solve the problem of face image retrieval in the field of computer vision, a face image retrieval method based on the deep features is proposed. Firstly, the convolutional neural network model is trained for face classification by face image training data set. Based on this, the triplet loss method is used to fine-tuning the trained face classification network model so that the network can be more efficient to extract face features of different people and construct efficient feature vectors for preliminary face retrieval filtering stage. In order to further improve the performance of system retrieval, the one-stage query expansion method is proposed to reconstruct the eigenvectors of face images to be retrieved. Through exhaustive experimental verification on two public face datasets (CASIA-3D FaceV1 and Labeled Faces in the Wild dataset), the results show that the face image retrieval method based on deep features improves the accuracy of the retrieval results significantly. Moreover, this method is simple and reliable, and can quickly realize the task of face retrieval.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.2

DOI:10.3788/aos201838.1010004

所属栏目:图像处理

基金项目:四川省科技厅科技成果转化项目(2014CC0043)、四川省科技创新苗子工程项目(SCMZ2006012)

收稿日期:2018-01-22

修改稿日期:2018-03-28

网络出版日期:2018-05-25

作者单位    点击查看

李振东:中国科学院成都计算机应用研究所, 四川 成都 610041中国科学院大学, 北京 100049
钟勇:中国科学院成都计算机应用研究所, 四川 成都 610041中国科学院大学, 北京 100049
陈蔓:中国科学院成都计算机应用研究所, 四川 成都 610041中国科学院大学, 北京 100049
曹冬平:中国科学院成都计算机应用研究所, 四川 成都 610041中国科学院大学, 北京 100049

联系人作者:李振东(lizhendong13@mails.ucas.ac.cn)

【1】Liu X H, Zhou C G, Zhang L B, et al. Method of quick searching in a huge scale face database[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(1): 183-188.
刘小华, 周春光, 张利彪, 等. 海量人脸数据库的快速检索[J]. 吉林大学学报(工学版), 2010, 40(1): 183-188.

【2】Yang Z G, Ai H Z. Cluster-based face image retrieval and its relevance feedback[J]. Acta Automatica Sinica, 2008, 34(9): 1033-1039.
杨之光, 艾海舟. 基于聚类的人脸图像检索及相关反馈[J]. 自动化学报, 2008, 34(9): 1033-1039.

【3】Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]∥Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012: 1097-1105.

【4】Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv: 1409.1556, 2014.

【5】Liu D W, Han L, Han X Y. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4): 0428001.
刘大伟, 韩玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究[J]. 光学学报, 2016, 36(4): 0428001.

【6】Zhang K P, Zhang Z P, Li Z F, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503.

【7】Li H X, Lin Z, Shen X H, et al. A convolutional neural network cascade for face detection[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5325-5334.

【8】Lin S Z, Zheng Y, Lu X F, et al. Adaptive tracking algorithm for aerial small targets based on multi-domain convolutional neural networks and autoregression model[J]. Acta Optica Sinica, 2017, 37(12): 1215006.
蔺素珍, 郑瑶, 禄晓飞, 等. 基于多域卷积神经网络与自回归模型的空中小目标自适应跟踪方法[J]. 光学学报, 2017, 37(12): 1215006.

【9】Parkhi O M, Vedaldi A, Zisserman A. Deep face recognition[C]∥British Machine Vision Conference, 2015: 1-12.

【10】Schroff F, Kalenichenko D, Philbin J. FaceNet: A unified embedding for face recognition and clustering[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2015: 815-823.

【11】Razavian A S, Azizpour H, Sullivan J, et al. CNN features off-the-shelf: An astounding baseline for recognition[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014: 512- 519.

【12】Yandex A B, Lempitsky V. Aggregating local deep features for image retrieval[C]∥Proceedings of IEEE International Conference on Computer Vision, 2015: 1269-1277.

【13】Tolias G, Sicre R, Jégou H. Particular object retrieval with integral max-pooling of CNN activations [J]. arXiv preprint arXiv: 1511.05879, 2015.

【14】Huang G B, Mattar M, Berg T, et al. Labeled faces in the wild: a database for studying face recognition in unconstrained environment[C]∥Workshop on Faces in''Real-Life''Images: Detection, Alignment, and Recognition. 2008.

【15】LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551.

引用该论文

Li Zhendong,Zhong Yong,Chen Man,Cao Dongping. Fast Face Image Retrieval Based on Depth Feature[J]. Acta Optica Sinica, 2018, 38(10): 1010004

李振东,钟勇,陈蔓,曹冬平. 基于深度特征的快速人脸图像检索方法[J]. 光学学报, 2018, 38(10): 1010004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF