首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1005001--1)

衍射拼接主镜厚度误差分析及分辨率增强实验

Thickness Error Analysis of Diffractive Segmented Primary Lens and Resolution Enhancement Experiment

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于傅里叶光学的基本原理和稀疏孔径光瞳结构,建立了子镜与衍射拼接主镜厚度误差间的关系模型。在子镜无衍射结构一侧微变形情况下,给出了任意低阶面形误差引入的相位差的一般表达式。以球面变形为例,分析计算了面形误差的容许范围,并采用ZEMAX光线追迹法对结果进行了交叉验证。对于子镜双侧无变形的特殊情况,运用蒙特卡罗方法讨论了子镜间厚度的一致性对拼接主镜成像质量的影响,给出了正态分布条件下衍射拼接主镜相干成像时子镜厚度误差的方差与极值范围。根据理论设计结果加工了两片离轴衍射子镜,开展了双子镜拼接成像性能实验。实验结果表明,衍射拼接主镜能提高等效分辨率。

Abstract

Based on the basic principle of Fourier optics and the pupil configuration of sparse aperture system, the relationship model of the thickness error between the sub-aperture and the diffractive segmented lens is established. The general expression of the phase difference induced by an arbitrary low-order surface shape error is presented under the condition of micro-deformation on one side of the sub-aperture which is without diffraction structure. Taking the spherical deformation as an example, the tolerance range of the surface shape error is discussed and calculated, and the results are verified by the ZEMAX ray tracing method. As for the special case that there is no deformation on both sides of the sub-aperture, the Monte Carlo method is used to investigate the effect of the thickness uniformity among these sub-apertures on the imaging quality of the segmented primary lens and the variance and extreme range of the sub-aperture thickness error are obtained when the coherent imaging is made by the diffractive segmented lens under a normal distribution. According to the theoretical design results, two off-axis diffractive sub-apertures are fabricated and the experiment on the segmented imaging performance of dual sub-apertures is conducted. The experimental results show that the diffractive segmented primary lens can improve the equivalent resolution.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O435

DOI:10.3788/aos201838.1005001

所属栏目:衍射与光栅

基金项目:国家自然科学基金(61605208,61475199)、中国科学院GF创新基金(CXJJ-15M061)、航天专用技术预研项目(30502010203)

收稿日期:2018-02-26

修改稿日期:2018-05-10

网络出版日期:2018-05-15

作者单位    点击查看

李韬杰:中国人民解放军陆军工程大学电子与光学工程系, 河北 石家庄 050003中国科学院重庆绿色智能技术研究院集成光电研究中心, 重庆 400714跨尺度制造技术重庆市重点实验室, 重庆 400714
汪岳峰:中国科学院重庆绿色智能技术研究院集成光电研究中心, 重庆 400714
杨正:中国科学院重庆绿色智能技术研究院集成光电研究中心, 重庆 400714跨尺度制造技术重庆市重点实验室, 重庆 400714
韩珺:武汉锐科光纤激光技术股份有限公司, 湖北 武汉 430070
陈建军:中国科学院重庆绿色智能技术研究院集成光电研究中心, 重庆 400714跨尺度制造技术重庆市重点实验室, 重庆 400714
李晶:中国科学院重庆绿色智能技术研究院集成光电研究中心, 重庆 400714跨尺度制造技术重庆市重点实验室, 重庆 400714
尹韶云:中国科学院重庆绿色智能技术研究院集成光电研究中心, 重庆 400714跨尺度制造技术重庆市重点实验室, 重庆 400714
吴鹏:中国科学院重庆绿色智能技术研究院集成光电研究中心, 重庆 400714跨尺度制造技术重庆市重点实验室, 重庆 400714

联系人作者:吴鹏(wupeng@cigit.ac.cn); 李韬杰(xrwlitaojie@163.com); 汪岳峰(wyf_gx110@sina.com);

【1】Hyde R A. Eyeglass. 1. Very large aperture diffractive telescopes[J]. Applied Optics, 1999, 38(19): 4198-4212.

【2】Hyde R A, Dixit S N, Weisberg A H, et al. Eyeglass: A very large aperture diffractive space telescope[J]. Proceedings of SPIE, 2002, 4849: 28-39.

【3】Barton I M, Britten J A, Dixit S N, et al. Fabrication of large-aperture lightweight diffractive lenses for use in space[J]. Applied Optics, 2001, 40(4): 447-451.

【4】Early J, Hyde R, Baron R. Twenty-meter space telescope based on diffractive Fresnel lens[J]. Proceedings of SPIE, 2004, 5166: 148-156.

【5】Andersen G. Large optical photon sieve[J]. Optics Letters, 2005, 30(22): 2976-2978.

【6】Andersen G. Membrane photon sieve telescopes[J]. Applied Optics, 2010, 49(33): 6391-6394.

【7】Andersen G, Asmolova O, Mcharg M G, et al. FalconSAT-7: A membrane space solar telescope[J]. Proceedings of SPIE, 2016, 9904: 99041P.

【8】Waller D, Campbell L, Domber J L, et al. MOIRE primary diffractive optical element structure deployment testing[C]. 2nd AIAA Spacecraft Structures Conference, 2015: 1836.

【9】Waller D, Domber J L, Belnap B, et al. MOIRE strongback thermal stability analysis and test results[C]. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2015: 0205.

【10】Waller D, Domber J, Price C, et al. MOIRE thermal vacuum structural stability testing[C]. 53rd AIAA Aerospace Sciences Meeting, 2015: 2019.

【11】Xie C Q, Zhu X L, Li H L, et al. Toward two-dimensional nanometer resolution hard X-ray differential-interference-contrast imaging using modified photon sieves[J]. Optics Letters, 2012, 37(4): 749-751.

【12】Xie C Q, Zhu X L, Shi L N, et al. Spiral photon sieves apodized by digital prolate spheroidal window for the generation of hard-X-ray vortex[J]. Optics Letters, 2010, 35(11): 1765-1767.

【13】Jin G, Yan J L, Liu H, et al. Flat-stitching error analysis of large-aperture photon sieves[J]. Applied Optics, 2014, 53(1): 90-95.

【14】Li T J, Wu P, Yin S Y, et al. Piston and tip-tilt error analysis of segmented diffractive lens[J]. Acta Optica Sinica, 2018, 38(2): 0211002.
李韬杰, 吴鹏, 尹韶云, 等. 衍射主镜面外拼接误差分析[J]. 光学学报, 2018, 38(2): 0211002.

【15】Li T J, Wu P, Yang Z, et al. Aberration analysis of membrane diffractive lens with substrate deformation error[J]. Acta Optica Sinica, 2017, 37(10): 1011003.
李韬杰, 吴鹏, 杨正, 等. 薄膜衍射主镜基底面形误差的像差特性分析[J]. 光学学报, 2017, 37(10): 1011003.

【16】Li T J, Wu P, Yang Z, et al. Large aperture membrane diffractive lens deformation error analysis[J]. Acta Photonica Sinica, 2018, 47(2): 0205002.
李韬杰, 吴鹏, 杨正, 等. 大口径薄膜衍射主镜面形误差仿真分析[J]. 光子学报, 2018, 47(2): 0205002.

【17】Wang R Q, Zhang Z Y, Guo C L, et al. Effects of fabrication errors on diffraction efficiency for a diffractive membrane[J]. Chinese Optics Letters, 2016, 14(12): 120501.

【18】Zhang J, Li M J, Yin G H, et al. Low-cost method of fabricating large-aperture, high efficiency, Fresnel diffractive membrane optic using a modified Moiré technique[J]. Chinese Optics Letters, 2016, 14(10): 100501.

引用该论文

Li Taojie,Wang Yuefeng,Yang Zheng,Han Jun,Chen Jianjun,Li Jing,Yin Shaoyun,Wu Peng. Thickness Error Analysis of Diffractive Segmented Primary Lens and Resolution Enhancement Experiment[J]. Acta Optica Sinica, 2018, 38(10): 1005001

李韬杰,汪岳峰,杨正,韩珺,陈建军,李晶,尹韶云,吴鹏. 衍射拼接主镜厚度误差分析及分辨率增强实验[J]. 光学学报, 2018, 38(10): 1005001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF