首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1010005--1)

基于lp空间力学模型的三维点云配准算法

Three-Dimensional Point Cloud Registration Algorithm Based on lp Spatial Mechanics Model

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了提高三维激光扫描点云的配准效率和精度,提出一种基于lp空间力学模型的点云配准算法。针对待配准的两组点云数据,首先计算两片点云的重心,通过重心化将两组点云移到以重心为原点的同一坐标系下,然后利用lp空间力学模型将复杂的两组点云数据分别简化为三个特征向量表示的模型,再根据两点云特征向量的对应关系利用奇异值分解方法求解刚体变换旋转矩阵,得到初始配准参数,最后使用改进的最近点迭代(ICP)算法实现两组点云的精确配准。本文算法可以处理无序散乱点云样本。相比于经典ICP算法,本文算法对Bunny点云数据的配准效率提高了72%,对Dragon点云数据的配准速度提高了4倍。实验表明,本文算法收敛速度较快,效果优良。

Abstract

To improve the registration efficiency and accuracy of three-dimensional laser scanning point cloud, we propose a point cloud registration algorithm based on lp space mechanics model. In the algorithm, the center of gravity of the sets data is calculated first, and two point clouds are moved to the same coordinate system with the center as the origin through gravity-centralizing. The complex point sets to be registered are represented as three eigenvectors respectively with the space mechanics model. Then, the singular value decomposition method is used to solve the rigid body transformation rotation matrix according to the corresponding relationship between two point sets’ eigenvectors. Finally, with the initial registration result, the improved iterative closest point (ICP) algorithm leads to perfect registration. The proposed algorithm can deal with disordered and scattered cloud sample. Compared with the classic ICP algorithm, the proposed method increases efficiency by 72% for the Bunny point cloud and is 4 times faster for Dragon scanning data. Experimental results indicate that the proposed algorithm has a fast convergence rate and good effect.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN958.98

DOI:10.3788/aos201838.1010005

所属栏目:图像处理

基金项目:四川省重点研发项目(2018GZ0226)

收稿日期:2018-03-08

修改稿日期:2018-04-09

网络出版日期:2018-05-25

作者单位    点击查看

赵敏:四川大学电气信息学院, 四川 成都 610065
舒勤:四川大学电气信息学院, 四川 成都 610065
陈蔚:西南技术物理研究所, 四川 成都 610041
杨赟秀:西南技术物理研究所, 四川 成都 610041

联系人作者:舒勤(shuchin@163.com)

【1】Chen M L, Lu W X, Wan Y C, et al. Automatic registration of terrestrial point clouds without additional information[J]. Chinese Journal of Lasers, 2016, 43(4): 0414003.
陈茂霖, 卢维欣, 万幼川, 等. 无附加信息的地面激光点云自动拼接方法[J]. 中国激光, 2016, 43(4): 0414003.

【2】Xiao Y, Hu S X, Xiao S, et al. A fast statistical method of tree information from 3D laser point clouds[J]. Chinese Journal of Lasers, 2018, 45(5): 0510007.
肖杨, 胡少兴, 肖深, 等. 从三维激光点云中快速统计树木信息的方法[J]. 中国激光, 2018, 45(5): 0510007.

【3】Lü J Z, Da F P, Zheng D L. Projector defocusing profilometry based on Sierra Lite dithering algorithm[J]. Acta Optica Sinica, 2014, 34(3): 0312004.
吕江昭, 达飞鹏, 郑东亮. 基于Sierra Lite抖动算法的散焦投影光栅测量[J]. 光学学报, 2014, 34(3): 0312004.

【4】An D, Gai S Y, Da F P. A new model of three-dimensional shape measurement system based on fringe projection[J]. Acta Optica Sinica, 2014, 34(5): 0512004.
安冬, 盖绍彦, 达飞鹏. 一种新的基于条纹投影的三维轮廓测量系统模型[J]. 光学学报, 2014, 34(5): 0512004.

【5】Li Z, Pan X Z, Dong F M, et al. Robust point cloud registration algorithm for Taylor series criterion function[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(4): 784-790.
李准, 潘幸子, 董方敏, 等. 泰勒级数准则函数鲁棒性点云配准算法[J]. 计算机辅助设计与图形学报, 2017,29(4): 784-790.

【6】Ni D J, Song A G, Xu X N, et al. 3D-point-cloud registration and real-world dynamics modeling-based virtual environment building method for teleoperation[J]. Robotica, 2017, 35(10): 1958-1974.

【7】Cheng X, Li Z W, Zhong K, et al. An automatic and robust point cloud registration framework based on view-invariant local feature descriptors and transformation consistency verification[J]. Optics and Lasers in Engineering, 2017, 98: 37-45.

【8】Nguyen T T, Liu X G, Wang H P, et al. 3D model reconstruction based on laser scanning technique[J]. Laser & Optoelectronics Progress, 2011, 48(8): 081201.
Nguyen Tien Thanh, 刘修国, 王红平, 等. 基于激光扫描技术的三维模型重建[J]. 激光与光电子学进展, 2011, 48(8): 081201.

【9】Lu J, Peng Z T, Xia G H. Point cloud registration algorithm based on neighborhood features of multi-scale normal vectors[J]. Journal of Optoelectronics·Laser, 2015, 26(4): 780-787.
陆军, 彭仲涛, 夏桂华. 点云多法向量邻域特征配准算法[J]. 光电子·激光, 2015, 26(4): 780-787.

【10】Choi S, Zhou Q Y, Koltun V. Robust reconstruction of indoor scenes[C]∥IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5556-5565.

【11】Ji S J, Ren Y C, Ji Z, et al. An improved method for registration of point cloud[J]. Optik, 2017, 140: 451-458.

【12】Guo Y L, Bennamoun M, Sohel F, et al. A comprehensive performance evaluation of 3D local feature descriptors[J]. International Journal of Computer Vision, 2016, 116(1): 66-89.

【13】Wilkowski A, Stefańczyk M. Detection and recognition of compound 3D models by hypothesis generation[M]. Warsaw: Springer, 2016: 659-668.

【14】Chen K, Zhang D, Zhang Y S. Point cloud data processing method of cavity 3D laser scanner[J]. Acta Optica Sinica, 2013, 33(8): 0812003.
陈凯, 张达, 张元生. 采空区三维激光扫描点云数据处理方法[J]. 光学学报, 2013, 33(8): 0812003.

【15】Liu J, Zhu J, Yang J, et al. Three-dimensional point cloud registration based on ICP algorithm employing KD tree optimization[C]∥Eighth International Conference on Digital Image Processing, 2016, 10033: 100334D.

【16】He Y, Liang B, Yang J, et al. An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features[J]. Sensors, 2017, 17(8): 1862.

【17】Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.

【18】Rusu R B, Blodow N, Marton Z C, et al. Aligning point cloud views using persistent feature histograms[C]∥ IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008: 3384-3391.

【19】Huang G, Li X F. Fully automatic point cloud registration algorithm based on CEGI and Fourier transformation[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(5): 104-109.
黄戈, 李晓峰. 基于CEGI和Fourier变换的全自动点云配准算法[J]. 四川大学学报(工程科学版), 2014, 46(5): 104-109.

【20】Lu Z P, Zheng H, Sha C F, et al. Point cloud registration algorithm based on free-form surface[J]. Journal of Jiangsu University (Natural Science Edition), 2015, 36(3): 319-323.
卢章平, 郑航, 沙春发, 等. 基于自由曲面的点云配准算法[J]. 江苏大学学报(自然科学版), 2015, 36(3): 319-323.

【21】Luo N, Wang Q. Optimized initial aligning algorithm for point cloud registration[J]. Journal of Xidian University(Natural Science), 2017, 44(5): 69-74.
罗楠, 王泉. 点云配准中初始变换的快速优化求解算法[J]. 西安电子科技大学学报(自然科学版), 2017, 44(5): 69-74.

【22】Li C L, Guo B Y, Ji Z. Global optimization and whole registration algorithm of multi-view 3D laser point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2): 183-189.
李彩林, 郭宝云, 季铮. 多视角三维激光点云全局优化整体配准算法[J]. 测绘学报, 2015, 44(2): 183-189.

【23】Liu J, Zhang X, Zhu J W. ICP three-dimensional point cloud registration based on K-D tree optimization[J]. Engineering of Surveying and Mapping, 2016, 25(6): 15-18.
刘江, 张旭, 朱继文. 一种基于K-D树优化的ICP三维点云配准方法[J]. 测绘工程, 2016, 25(6): 15-18.

【24】Wang YJ, Lian T F, Wu M M, et al. Point cloud registration based on octree and KD-tree index[J]. Engineering of Surveying and Mapping, 2017, 26(8): 35-40.
王育坚, 廉腾飞, 吴明明, 等. 基于八叉树与KD树索引的点云配准方法[J]. 测绘工程, 2017, 26(8): 35-40.

【25】Huang Y, Da F P, Tao H J. An automatic registration algorithm for point cloud based on feature extraction[J]. Chinese Journal of Lasers, 2015, 42(3): 0308002.
黄源, 达飞鹏, 陶海跻. 一种基于特征提取的点云自动配准算法[J]. 中国激光, 2015, 42(3): 0308002.

【26】Newton I. Philosophiae naturalis principia mathematica[M]. Zhao Z J, Transl. 3rd ed. Beijing: The Commercial Press, 2006: 205-237.
牛顿. 自然哲学的数学原理[M]. 赵振江, 译. 3版. 北京: 商务印书馆, 2006: 205-237.

【27】Shu C X, He Y T, Sun Q K. Point cloud registration based on convolutional neural network[J]. Laser & Optoelectronics Progress, 2017, 54(3): 031001.
舒程珣, 何云涛, 孙庆科. 基于卷积神经网络的点云配准方法[J]. 激光与光电子进展, 2017, 54(3): 031001.

引用该论文

Zhao Min,Shu Qin,Chen Wei,Yang Yunxiu. Three-Dimensional Point Cloud Registration Algorithm Based on lp Spatial Mechanics Model[J]. Acta Optica Sinica, 2018, 38(10): 1010005

赵敏,舒勤,陈蔚,杨赟秀. 基于lp空间力学模型的三维点云配准算法[J]. 光学学报, 2018, 38(10): 1010005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF