首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1011001--1)

非相干探测模式下啁啾调幅关联成像影响因素研究

Influence of Chirped-Amplitude Correlated Imaging Under Incoherent Detection

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

啁啾调幅激光关联成像是一种将关联成像原理与脉冲压缩方法相结合的新型成像方法,能够获取目标的方位、灰度、距离和速度信息,并且可以有效抑制背景噪声对成像质量的影响。目前初步建立了啁啾调幅激光关联成像理论模型和仿真验证,然而并未涉及光源调制性能对成像质量的影响。为此理论推导并数值分析了背景光存在条件下,光源调制性能对非相干外差探测啁啾调幅关联成像质量的影响。并且得到了起始调制深度、调制深度衰减系数、频率改变率,以及光电探测器带宽等参数与探测信噪比及成像质量的关系,该工作对啁啾调幅激光关联成像雷达系统的设计和性能评估具有指导意义。

Abstract

Chirped-amplitude-modulated (CAM) laser ghost imaging (GI) is a novel imaging mechanism that combines the principle of correlated imaging with pulse-compression. It can acquire the direction, grayscale, range and velocity of the target, and can effectively reduce the influence of the background noise on imaging quality. At present, the theoretical model and simulation verification of chirped-amplitude laser correlation imaging are preliminarily established. However, the influence of laser source modulation performance is not involved. For this reason, the influence of modulation performance on imaging quality of non-coherent heterodyne CAM GI is deduced and numerically analyzed. The relationships among initial modulation depth, modulation depth decay coefficient, frequency change ratio and bandwidth of photodiode on detection signal to noise ratio and imaging performance of heterodyne GI are obtained. This work has guiding significance for the future design and performance assessment of CAM GI lidar system.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201838.1011001

所属栏目:成像系统

基金项目:国家自然科学基金(61571427)、中国科学院青年创新促进会优秀人才支持计划(1802311X30)

收稿日期:2018-03-15

修改稿日期:2018-04-23

网络出版日期:2018-05-15

作者单位    点击查看

潘龙:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800中国科学院大学, 北京 100049
邓陈进:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800中国科学院大学, 北京 100049
龚文林:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
韩申生:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800

联系人作者:龚文林(gongwl@siom.ac.cn); 潘龙(panlong@siom.ac.cn);

【1】Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 2004, 92(9): 093903.

【2】Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 2004, 93(9): 093602.

【3】Zhang M H, Wei Q, Shen X, et al. Lensless Fourier-transform ghost imaging with classical incoherent light[J]. Physical Review A, 2007, 75(2): 021803.

【4】Liu H L, Cheng J, Han S S. Ghost imaging in Fourier space[J]. Journal of Applied Physics, 2007, 102(10): 103102.

【5】Wang K G. Cao D Z, Xiong J. Progress in correlated optics[J]. Physics, 2008, 37(4): 223-232.
汪凯戈, 曹德忠, 熊俊. 关联光学新进展[J]. 物理, 2008, 37(4): 223-232.

【6】Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.

【7】Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 2009, 95(13): 131110.

【8】Gong W L, Zhang P L, Shen X, et al. Ghost “pinhole” imaging in Fraunhofer region [J]. Applied Physics Letters, 2009, 95(7): 071110.

【9】Shen X, Zhang M H, Liu H L, et al. Research on the pulsed pseudo-thermal light[J]. Chinese Journal of Lasers, 2009, 36(11): 2893-2898.
沈夏, 张明辉, 刘红林, 等. 脉冲式赝热光源的实验研究[J]. 中国激光, 2009, 36(11): 2893-2898.

【10】Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging[J]. Physical Review Letters, 2010, 104(25): 253603.

【11】Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 2012, 11(4): 949-993.

【12】Meyers R E, Deacon K S, Shih Y. Positive-negative turbulence-free ghost imaging[J]. Applied Physics Letters, 2012, 100(13): 131114.

【13】Chen M L, Li E R, Wang H, et al. Ghost imaging based on sparse array pseudothermal light system[J]. Acta Optica Sinica, 2012, 32(5): 0503001.
陈明亮, 李恩荣, 王慧, 等. 基于稀疏阵赝热光系统的强度关联成像研究[J]. 光学学报, 2012, 32(5): 0503001.

【14】Li M F, Zhang Y R, Luo K H, et al. Time-correspondence differential ghost imaging[J]. Physical Review A, 2013, 87(3): 033813.

【15】Zhou C, Huang H Y, Liu B, et al. Hybrid speckle-pattern compressive computational ghost imaging [J]. Acta Optica Sinica, 2016, 36(9): 0911001.
周成, 黄贺艳, 刘兵, 等. 基于混合散斑图的压缩计算鬼成像方法研究[J]. 光学学报, 2016, 36(9): 0911001.

【16】Zhao C Q, Gong W L, Chen M L, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 2012, 101(14): 141123.

【17】Chen M L, Li E R, Gong W L, et al. Ghost imaging lidar via sparsity constraints in real atmosphere[J]. Optics and Photonics Journal, 2013, 3(2): 83-85.

【18】Gong W L, Zhao C Q, Jiao J, et al. Three-dimensional ghost imaging ladar[J]. arXiv preprint arXiv: 1301.5767.

【19】Yang X, Zhang Y, Yang C H, et al. Heterodyne 3D ghost imaging[J]. Optics Communications, 2016, 368: 1-6.

【20】Deng C J, Gong W L, Han S S. Pulse-compression ghost imaging lidar via coherent detection[J]. Optics Express, 2016, 24(23): 25983-25994.

【21】Deng C J, Pan L, Wang C L, et al. Performance analysis of ghost imaging lidar in background light environment[J]. Photonics Research, 2017, 5(5): 431-435.

【22】Colton D, Kress R. Inverse acoustic and electromagnetic scattering theory[M]. New York: Springer-Verlag, 1992.

引用该论文

Pan Long,Deng Chenjin,Gong Wenlin,Han Shensheng. Influence of Chirped-Amplitude Correlated Imaging Under Incoherent Detection[J]. Acta Optica Sinica, 2018, 38(10): 1011001

潘龙,邓陈进,龚文林,韩申生. 非相干探测模式下啁啾调幅关联成像影响因素研究[J]. 光学学报, 2018, 38(10): 1011001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF