首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1027002--1)

泡沫覆盖不规则海面的空-水量子密钥分发

Air-Water Quantum Key Distribution on Irregular Sea Surface Covered with Foams

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于光子量子特性,综合考虑泡沫粒径分布、散射系数、泡沫层厚度及入射角、风速的影响,建立了一种泡沫-不规则海面的复合模型。给出了空-水量子密钥分发(QKD)系统的误码率公式,结合蒙特卡罗算法模拟研究了各参量对光子偏振量子态、QKD误码率及传输距离的影响,分析了泡沫-不规则海面下4强度BB84空-水QKD系统的性能。研究结果表明,偏振误码率随泡沫层厚度、散射系数、光源入射角的增大而增大;风速增大导致空-水QKD系统的量子误码率增大,安全传输距离减小;随着泡沫层厚度的增大,空-水QKD系统的密钥生成率和安全传输距离减小。当泡沫层厚度增至6 cm并考虑最大偏振误码率时,最大安全距离由144 m降至101.3 m,但仍满足水下航行器100 m的安全潜深要求。

Abstract

A foam-irregular-sea-surface hybrid model is established based on the quantum properties of photons and with the consideration of the influences of the foam particle size distribution, scattering coefficient, foam layer thickness, incident angle and wind speed. The error rate formula for an air-water quantum key distribution (QKD) system is obtained. Combining with the Monte Carlo algorithm, the influence of each parameter on the photon polarization state, QKD error rate and transmission distance is simulated and discussed. The performance of the four-intensity BB84 air-water QKD system under the foam-irregular-sea-surface is analyzed. The research results show that, the polarization error rate increases with the increase of the foam layer thickness, scattering coefficient and light incident angle. Besides, the increase of wind speed leads to the rise of the quantum bit error rate of the air-water QKD system and the reduction of the secure transmission distance. Meanwhile, the key generation rate and the secure transmission distance of the air-water QKD system decrease as the foam layer thickness increases, and the maximum secure distance is reduced from 144 m to 101.3 m when the foam layer thickness increases to 6 cm and the maximum polarization error rate is considered, but it still satisfies the requirement of the 100 m safety depth for the underwater vehicles.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O431.2

DOI:10.3788/aos201838.1027002

所属栏目:量子光学

基金项目:国家自然科学基金(61302099)

收稿日期:2018-03-15

修改稿日期:2018-05-02

网络出版日期:2018-05-16

作者单位    点击查看

王潋:海军工程大学电子工程学院, 湖北 武汉 430033
周媛媛:海军工程大学电子工程学院, 湖北 武汉 430033
周学军:海军工程大学电子工程学院, 湖北 武汉 430033
张政:海军工程大学电子工程学院, 湖北 武汉 430033
陈霄:海军工程大学电子工程学院, 湖北 武汉 430033

联系人作者:周媛媛(yyzhou516@163.com); 王潋(15623529329@163.com); 周学军(Liuzh531@163.com);

【1】Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[J]. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 1984, 560: 175-179.

【2】Lanzagorta M. Underwater communications[M]. New York: Morgan & Claypool Publisher, 2012: 45-48.

【3】Uhlmann J, Lanzagorta M, Venegas-Andraca S E. Quantum communications in the maritime environment[C]. MTS/IEEE Oceans Conference, 2015: 15798695.

【4】Zhao S C, Shi P, Li W D, et al. Simulation and QBER analysis of underwater quantum communication[J]. Periodical of Ocean University of China, 2016, 46(2): 131-137.
赵士成, 史鹏, 李文东, 等. 水下量子通信的数值模拟及误码率分析[J]. 中国海洋大学学报, 2016, 46(2): 131-137.

【5】Shi P, Zhao S C, Gu Y J, et al. Channel analysis for single photon underwater free space quantum key distribution[J]. Journal of the Optical Society of America A, 2015, 32(3): 349-356.

【6】Ji L, Gao J, Yang A L, et al. Towards quantum communications in free-space seawater[J]. Optics Express, 2017, 25(17): 19795-19806.

【7】Liang Y, Guo L X. Study of the electromagnetic scattering from the rough sea surface with bubbles/foams by the modified two-scale method[J]. Acta Physica Sinica, 2009, 58(9): 6158-6166.
梁玉, 郭立新. 气泡/泡沫覆盖粗糙海面电磁散射的修正双尺度法研究[J]. 物理学报, 2009, 58(9): 6158-6166.

【8】Qi X, Han X E. Study about laser scattering characteristics of rough sea surface with foams[J]. Acta Optica Sinica, 2015, 35(8): 0829003.
亓晓, 韩香娥. 覆盖泡沫粗糙海面的激光散射特性研究[J]. 光学学报, 2015, 35(8): 0829003.

【9】Li X Z, Miao X C, Qi X, et al. Laser atmosphere seawater channel transmission characteristics under complicate sea conditions[J]. Acta Optica Sinica, 2018, 38(3): 0301002.
李祥震, 苗希彩, 亓晓, 等. 复杂海况下激光大气-海水信道传输特性研究[J]. 光学学报, 2018, 38(3): 0301002.

【10】Zhou F, Yong H L, Li D D, et al. Study on quantum key distribution between different media[J]. Acta Physica Sinica, 2014, 63(14): 140303.
周飞, 雍海林, 李东东, 等. 基于不同介质间量子密钥分发的研究[J]. 物理学报, 2014, 63(14): 140303.

【11】Xu H B, Zhou Y Y, Zhou X J. The performance analysis of quantum key distribution based on an irregular air-water interface[C]. IEEE International Conference on Information Management, 2017: 358-361.

【12】Xu H B, Zhou Y Y, Zhou X J. Effect of sea foam on polarized photons scattering[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122901.
徐华彬, 周媛媛, 周学军. 海面泡沫对偏振光子的散射影响[J]. 激光与光电子学进展, 2017, 54(12):122901.

【13】Villarino R, Camps A, Vall-llossera M, et al. Sea foam effects on the brightness temperature at L-band[J]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2003, 5: 3076-3078.

【14】Zhang Y L, Wang Y M, Huang A P. Influence of suspended particles in Mie theory on underwater laser transmission[J]. Chinese Journal of Lasers, 2018, 45(5): 0505002.
张莹珞,王英民, 黄爱萍. 米氏理论下悬浮粒子对水下激光传输的影响[J].中国激光, 2018, 45(5): 0505002.

【15】Wu J. Bubble flux and marine aerosol spectra under various wind velocities[J]. Journal of Geophysical Research Oceans, 1992, 97(C2): 2327-2333.

【16】Qi X. Propagation characteristics of laser beam traversing the air-sea interface with foams[D]. Xi′an: Xidian University, 2015: 46-48.
亓晓. 泡沫覆盖气-海界面的激光传输特性研究[D]. 西安: 西安电子科技大学, 2015: 46-48.

【17】Wu Z S, Wang Y P. Electromagnetic scattering for multilayered sphere: Recursive algorithms[J]. Radio Science, 1991, 26(6): 1393-1401.

【18】Tsang L, Ding K H, Zhang G, et al. Backscattering enhancement and clustering effects of randomly distributed dielectric cylinders overlying a dielectric half space based on Monte-Carlo simulations[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(5): 488-499.

【19】Wei A H, Zhao W, Han B, et al. Simulative study of optical pulse propagation in water based on Fournier-Forand and Henyey-Greenstein in volume scattering functions[J]. Acta Optica Sinica, 2013, 33(6): 0601003.
魏安海, 赵卫, 韩彪, 等. 基于Fournier-Forand和Henyey-Greenstein体积散射函数的水中光脉冲传输仿真分析[J]. 光学学报, 2013, 33(6): 0601003.

【20】Freda W, Piskozub J. Improved method of Fournier-Forand marine phase function parameterization[J]. Optics Express, 2007, 15(20): 12763-12768.

【21】Gjerstad K I, Stamnes J J, Hamre B, et al. Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system[J]. Applied Optics, 2003, 42(15): 2609-2622.

【22】Gooch J W. Snell′s law[M]. New York: Springer, 2011: 673-675.

【23】Fung C H F, Qi B, Tamaki K, et al. Phase-remapping attack in practical quantum-key-distribution systems[J]. Physical Review A, 2007, 75(3): 032314.

【24】Zhou Y H, Yu Z W, Wang X B. Tightened estimation can improve the key rate of measurement-device-independent quantum key distribution by more than 100%[J]. Physical Review A, 2014, 89(5): 052325.

【25】Sun X M, Wang H H, Shen J. Study on two Monte Carlo simulation programs of polarization lidar depolarization by water cloud[J]. Acta Optica Sinica, 2017, 37(1): 0101002.
孙贤明, 王海华, 申晋. 两种模拟水云对偏振激光雷达退偏振的蒙特卡罗方法研究[J]. 光学学报, 2017, 37(1): 0101002.

【26】Wang Q, Zhang C H, Wang X B. Scheme for realizing passive quantum key distribution with heralded single-photonsources[J]. Physical Review A, 2016, 93(3): 032312.

引用该论文

Wang Lian,Zhou Yuanyuan,Zhou Xuejun,Zhang Zheng,Chen Xiao. Air-Water Quantum Key Distribution on Irregular Sea Surface Covered with Foams[J]. Acta Optica Sinica, 2018, 38(10): 1027002

王潋,周媛媛,周学军,张政,陈霄. 泡沫覆盖不规则海面的空-水量子密钥分发[J]. 光学学报, 2018, 38(10): 1027002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF