首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1006004--1)

基于光纤Sagnac传感技术的结构冲击定位

Structural Impact Localization Based on Optical Fiber Sagnac Sensing Technique

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

冲击定位可为结构冲击损伤提供准确的位置信息。基于光纤布拉格光栅(FBG)传感器存在解调频率低、需要训练样本等缺点,提出了一种利用光纤Sagnac传感技术实现结构冲击定位的方法。基于此方法的传感系统主要由宽带光源、光纤Sagnac干涉仪、光探测器以及数据采集与处理单元构成。当粘贴在结构表面的传感探头受到冲击应力波作用时,Sagnac干涉仪相位受到调制,从而导致输出的光强发生变化,通过光探测器将光信号转换为电压信号输出。首先,对传感系统采样的时域信号进行小波降噪和去直流干扰处理,再利用Db4小波包进行能量特征提取与信号重构,并获取应力波到达2端的传感器的时间,最后利用时差法进行冲击定位。为了验证该冲击载荷定位系统的有效性,对长度为100 cm的钢管结构进行了35次低速冲击实验。结果表明,该方法可以有效地识别冲击位置,最大定位误差和最大均方根误差分别为0.65 cm和0.36 cm。研究结果可为结构冲击定位提供另外一种可靠的方法。

Abstract

Impact localization can provide accurate location information for structural impact damages. As fiber Bragg grating has low sampling frequency and requires training samples, a method for structural impact localization based on optical fiber Sagnac sensing technique is proposed. The sensing system mainly consists of broadband light source, optical fiber Sagnac interferometers, photo-detectors and data acquisition card. The phase of the interferometer can be modulated when the sensing probe stuck on structure is affected by impact stress waves. Therefore, the output light intensity can be changed and converted to voltage signal by photo-detector. Firstly, the impact response signals are de-noised and direct current interferences are eliminated by wavelet transform. Secondly, the energy characteristics are extracted, time-domain signals are reconstructed by wavelet packet analysis, and the time of wavelet arrival to the two sensors is acquired. Lastly, impact position is calculated by time-difference method. The result shows that 35 impacts on the steel pipe with the length of 100 cm have a maximum error of 0.65 cm, and a maximum root-mean-square error of 0.36 cm, respectively. This research can provide a novel and available method for structural impact localization.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TH744

DOI:10.3788/aos201838.1006004

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金-联合基金项目(U1537102)、航空科学基金(20170252004)、安徽高校自然科学研究重点项目(KJ2018A0042)、械机构力学及控制国家重点实验室开放课题(MCMS-0516K01)

收稿日期:2018-03-15

修改稿日期:2018-04-10

网络出版日期:2018-05-08

作者单位    点击查看

程竹明:南京航空航天大学机械结构力学及控制国家重点实验室, 江苏 南京 210016安徽工业大学电气与信息工程学院, 安徽 马鞍山 243002
曾捷:南京航空航天大学机械结构力学及控制国家重点实验室, 江苏 南京 210016
常晨:南京航空航天大学机械结构力学及控制国家重点实验室, 江苏 南京 210016
宋雪刚:南京航空航天大学机械结构力学及控制国家重点实验室, 江苏 南京 210016
梁大开:南京航空航天大学机械结构力学及控制国家重点实验室, 江苏 南京 210016

联系人作者:梁大开(liangdk@nuaa.edu.cn)

【1】Sharif-Khodaei Z, Ghajari M, Aliabadi M H. Determination of impact location on composite stiffened panels[J]. Smart Materials and Structures, 2012, 21(10): 105026.

【2】Lu G, Liang D K, Hu X L, et al. Energy detection of low velocity impact on fiber optic composite material structure[J]. Chinese Journal of Scientific Instrument, 2010, 31(3): 577-581.
陆观, 梁大开, 胡兴柳, 等. 光纤复合材料结构低速冲击判位研究[J]. 仪器仪表学报, 2010, 31(3): 577-581.

【3】Kundu T, Das S, Jata K V. Detection of the point of impact on a stiffened plate by the acoustic emission technique[J]. Smart Materials and Structures, 2009, 18(3): 035006.

【4】Qiu L, Yuan S F, Zhang X Y, et al. A time reversal focusing based impact imaging method and its evaluation on complex composite structures[J]. Smart Materials and Structures, 2011, 20(10): 105014.

【5】Zhang J K, Zhang X. An efficient approach for predicting low-velocity impact force and damage in composite laminates[J]. Composite Structures, 2015, 130: 85-94.

【6】Mickens T, Schulz M, Sundaresan M, et al. Structural health monitoring of an aircraft joint[J]. Mechanical Systems and Signal Processing, 2003, 17(2): 285-303.

【7】Sai Y Z, Zhao X, Hou D L, et al. Acoustic emission localization based on FBG sensing network and SVR algorithm[J]. Photonic Sensors, 2017, 7(1): 48-54.

【8】Xiong Z L, Liang D K, Li T W, et al. Impact localization by using fiber Bragg grating sensors based on correlation dimension[J]. Chinese Journal of Lasers, 2016, 43(8): 0804001.
熊稚莉, 梁大开, 李彤韡, 等. 基于关联维数的光纤布拉格光栅的冲击定位[J]. 中国激光, 2016, 43(8): 0804001.

【9】Luo B B, Zou W G, Zhao M F, et al. Ph sensor based on fiber grating with extremely large tilt angle and its sensitivity enhancement[J]. Acta Optica Sinica, 2017, 37(1): 0106009.
罗彬彬, 邹文根, 赵明富, 等. 极大倾斜角度光纤光栅pH值传感器及其增敏研究[J]. 光学学报, 2017, 37(1): 0106009.

【10】Wang Y, Zhao K, Liu J P. Optical fiber Bragg grating temperature monitoring based on volume phase grating dispersion demodulation[J]. Laser & Optoelectronics Progress, 2016, 53(10): 101202.
王彦, 赵凯, 刘加萍. 基于体相位光栅色散解调的布拉格光纤光栅温度监测[J]. 激光与光电子学进展, 2016, 53(10): 101202.

【11】Jang B W, Park S O, Lee Y G, et al. Detection of impact damage in composite structures using high speed FBG interrogator[J]. Advanced Composite Materials, 2012, 21(1): 29-44.

【12】Jang B W, Lee Y G, Kim J H, et al. Real-time impact identification algorithm for composite structures using fiber Bragg grating sensors[J]. Structural Control & Health Monitoring, 2012, 19: 580-591.

【13】Lu J Y, Wang B F, Liang D K. Wavelet packet energy characterization of low velocity impacts and load localization by optical fiber Bragg grating sensor technique[J]. Applied Optics, 2013, 52(11): 2346-2352.

【14】Lu S Z, Jiang M S, Sui Q M, et al. Identification of impact location by using fiber Bragg grating based on wavelet transform and support vector classifiers[J]. Chinese Journal of Lasers, 2014, 41(3): 0305006.
路士增, 姜明顺, 隋青美, 等. 基于小波变换和支持向量多分类机的光纤布拉格光栅低速冲击定位系统[J]. 中国激光, 2014, 41(3): 0305006.

【15】Shrestha P, Kim J H, Park Y, et al. Impact localization on composite wing using 1D array FBG sensor and RMS/correlation based reference database algorithm[J]. Composite Structures, 2015, 125: 159-169.

【16】Zhang F Y, Jiang M S, Sui Q M, et al. Acoustic emission localization technique based on fiber Bragg grating sensing network and signal feature reconstruction[J]. Acta Physica Sinica, 2017, 66(7): 074210.
张法业, 姜明顺, 隋青美, 等. 基于光纤光栅的冲击激励声发射响应机理与定位方法研究[J]. 物理学报, 2017, 66(7): 074210.

【17】Hang L J, He C F, Wu B. A new pipeline leakage detection system based on linear optical fiber Sagnac interferometer and its location technology[J]. Chinese Journal of Lasers, 2007, 34(6): 820-824.
杭利军, 何存富, 吴斌. 一种新的直线型Sagnac光纤干涉仪管道泄漏检测系统及其定位技术[J]. 中国激光, 2007, 34(6): 820-824.

【18】Xu H Y, Xu Q, Xiao Q, et al. Disturbance detection in distributed fiber-optic sensor based on time-delay estimation[J]. Acta Optica Sinica, 2010, 30(6): 1603-1607.
许海燕, 徐锲, 肖倩, 等. 基于时延估计的分布式光纤传感定位[J]. 光学学报, 2010, 30(6): 1603-1607.

【19】Jang T S, Lee S S, Kim Y G. Surface-bonded fiber optic Sagnac sensors for ultrasound detection[J]. Ultrasonics, 2004, 42: 837-841.

引用该论文

Cheng Zhuming,Zeng Jie,Chang Chen,Song Xuegang,Liang Dakai. Structural Impact Localization Based on Optical Fiber Sagnac Sensing Technique[J]. Acta Optica Sinica, 2018, 38(10): 1006004

程竹明,曾捷,常晨,宋雪刚,梁大开. 基于光纤Sagnac传感技术的结构冲击定位[J]. 光学学报, 2018, 38(10): 1006004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF