首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1006006--1)

近红外S-C-L超宽波带低噪声PbS量子点掺杂光纤放大器

PbS Quantum-Dot-Doped Fiber Amplifier in NIR S-C-L Ultra-Broad Waveband with Low Noise

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

实现了基于PbS量子点掺杂的近红外S-C-L超宽带低噪声光纤放大器(QDFA)。以紫外(UV)固化胶为光纤纤芯本底,以PbS量子点作为增益介质,由973 nm单模激光器、隔离器、波分复用器、量子点掺杂光纤等构成全光路结构,在1470~1620 nm的宽波带区间实现了对信号光的放大。结果表明:在1550 nm波长附近,QDFA的带宽为75 nm。当输入信号光功率为-23 dBm时,开关增益为16 dB~19 dB(净增益为12.26 dB~15.26 dB),噪声系数约为3 dB。实验观测到了较明显的激励阈值和增益饱和现象,确定了适用的量子点掺杂浓度与光纤长度之间的线性关系。所实现的QDFA的带宽、C波带增益平坦度、噪声系数等指标优于常规的掺铒光纤放大器(EDFAs),L波带增益平坦度略低于经优化的多光纤EDFAs。

Abstract

A PbS quantum-dot-doped fiber amplifier (QDFA) is realized experimentally in NIR S-C-L ultra-broad waveband and with low noise. Taking UV-gel as the optical fiber background and PbS quantum dots (QDs) as the gain medium in the fiber, we setup a full-light path structure composed of a 973 nm pumping single mode laser, an isolator, a wavelength division multiplexing and a quantum-dot-doped fiber. The broadband signal light with the range of 1470-1620 nm is amplified in an all-optical structure. There is evidence to show that the QDFA has 75 nm bandwidth around the wavelength region of 1550 nm with the switch gain of 16 dB-19 dB (the net gain of 12.26 dB-15.26 dB) for the input signal power of -23 dBm and the noise figure of about 3 dB. An obvious excitation threshold and gain saturation phenomenon are observed by the experiment. A linear relationship is determined between QD doping concentrations and fiber length. The obtained performances in the bandwidth, C-waveband gain flatness and noise figure of QDFA in this paper are better than those of the conventional erbium-doped fiber amplifiers (EDFAs), while the L-waveband gain flatness is a little lower than that of the optimized EDFAs.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN253

DOI:10.3788/aos201838.1006006

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61274124,61474100)

收稿日期:2018-03-20

修改稿日期:2018-05-02

网络出版日期:2018-05-15

作者单位    点击查看

程成:浙江工业大学光电子智能化技术研究所,浙江 杭州 310023
吴昌斌:浙江工业大学光电子智能化技术研究所,浙江 杭州 310023

联系人作者:吴昌斌(2277546729@qq.com); 程成(chengch@zjut.edu.cn);

【1】Xie X J, Kang J H, Cao W, et al. Designing artificial 2D crystals with site and size controlled quantum dots[J]. Scientific Reports, 2017, 7(1): 9965.

【2】Mongin C, Moroz P, Zamkov M, et al. Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots[J]. Nature Chemistry, 2017, 10(2): 225-230.

【3】Geiregat P, Houtepen A J, Sagar L K, et al. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots[J]. Nature Materials, 2017, 17(1): 35-42.

【4】Cheng C, Cheng X Y. Nanophotonics and applications of quantum dots[M]. Beijing: Science Press, 2017: 53-134.
程成, 程潇羽. 量子点纳米光子学及应用[M]. 北京: 科学出版社, 2017: 53-134.

【5】Roy Choudhury K, Sahoo Y, Jang S, et al. Efficient photosensitization and high optical gain in a novel quantum-dot-sensitized hybrid photorefractive nanocomposite at a telecommunications wavelength[J]. Advanced Functional Materials, 2005, 15(5): 751-756.

【6】Dong G P, Wu B T, Zhang F T, et al. Broadband near-infrared luminescence and tunable optical amplification around 1. 55 μm and 1. 33 μm of PbS quantum dots in glasses[J]. Journal of Alloys and Compounds, 2011, 509(38): 9335-9339.

【7】Shang Y N, Wen J X, Dong Y H, et al. Luminescence properties of PbS quantum-dot-doped silica optical fibre produced via atomic layer deposition[J]. Journal of Luminescence, 2017, 187: 201-204.

【8】Huang X J, Fang Z J, Kang S L, et al. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission[J]. Journal of Materials Chemistry C, 2017, 5(31): 7927-7934.

【9】Shen K, Baig S, Jiang G M, et al. Improved light emitting UV curable PbS quantum dots-polymer composite optical waveguides[J]. Optics Communications, 2017, 402: 606-611.

【10】Sun X L, Zhao W, Liu L Y, et al. Enhancing environmental stability of a PbS quantum dot optical fiber amplifier via rational interface design[J]. Optical and Quantum Electronics, 2018, 50(4): 173.

【11】Lan L, Pang F, Sun X, et al. A PbS quantum dot polymer optical waveguide amplifier[C]∥2011 Asia Communications and Photonics Conference and Exhibition(ACP), November 13-16, 2011, Shanghai, China. New York: IEEE, 2011: 12784425.

【12】Omari A, Moreels I, Masia F, et al. Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm[J]. Physical Review B, 2012, 85(11): 115318.

【13】Brus L. Electronic wave functions in semiconductor clusters: experiment and theory[J]. The Journal of Physical Chemistry, 1986, 90(12): 2555-2560.

【14】Cheng C, Huang Y, Yao J H. Spectra cross-sections of CdSxSe1-x/ZnS(core/shell) quantum dots and photoluminescent transmission of the doped fiber[J]. Acta Photonica Sinica, 2017, 46(9): 0916001.
程成, 黄媛, 姚建华. CdSxSe1-x/ZnS(核/壳) 量子点的光谱截面及其掺杂光纤的传光特性[J]. 光子学报, 2017, 46(9): 0916001.

【15】Noh M, Kim T, Lee H, et al. Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 359(1/2/3): 39-44.

【16】Cheng C, Wang G D, Cheng X Y. Effects of surface polarization on the bandgap and the absorption-peak wavelength of quantum dot at room temperature[J]. Acta Physica Sinica, 2017, 66(13): 137802.
程成, 王国栋, 程潇羽. 室温下表面极化效应对量子点带隙和吸收峰波长的影响[J]. 物理学报, 2017, 66(13): 137802.

【17】Pang F F, Sun X L, Guo H R, et al. A PbS quantum dots fiber amplifier excited by evanescent wave[J]. Optics Express, 2010, 18(13): 14024-14030.

【18】Becker P M, Olsson A A, Simpson J R. Erbium-doped fiber amplifiers: fundamentals and technology[M]. Amsterdam: Academic Press, 1999.

【19】Mahdi M A, Adikan F R M, Poopalan P, et al. High-gain bidirectional Er3+-doped fiber amplifier for conventional- and long-wavelength bands[J]. IEEE Photonics Technology Letters, 2000, 12(11): 1468-1470.

引用该论文

Cheng Cheng,Wu Changbin. PbS Quantum-Dot-Doped Fiber Amplifier in NIR S-C-L Ultra-Broad Waveband with Low Noise[J]. Acta Optica Sinica, 2018, 38(10): 1006006

程成,吴昌斌. 近红外S-C-L超宽波带低噪声PbS量子点掺杂光纤放大器[J]. 光学学报, 2018, 38(10): 1006006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF