首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1019001--1)

脉冲内四波混频与四分量超慢光孤子

Intrapulse Four-Wave Mixing and Four-Component Ultraslow Optical Solitons

王苗   杭超  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了电磁感应透明条件下五能级M型原子体系中探测光脉冲的非线性传播。当探测光脉冲的脉宽较大时,其色散效应可忽略,脉冲内具有不同偏振方向和不同边带的4个分量可发生四波混频,相互交换能量;当探测光脉冲的脉宽较短时,必须考虑其色散效应,4个分量可形成一种全新的四分量超慢光孤子。产生这种四分量超慢光孤子的输入功率为微瓦量级,远低于光纤中产生矢量光孤子所需的能量。

Abstract

The nonlinear propagation of a probe pulse in a M-type five-level atomic system is investigated under the condition of electromagnetically induced transparency. As for a long probe pulse, its dispersion effect can be neglected, and the four-wave mixing process and the energy exchange can occur among the four components within the probe pulse with different polarization directions and different side-bands. In contrast, as for a short probe pulse, the dispersion effect must be considered, and a novel kind of four-component ultraslow optical soliton occurs among these four components. In addition, the input power for the generation of such soliton is at micro-watt level, which is much lower than that needed for the generation of the vector solitons in fibers.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437

DOI:10.3788/aos201838.1019001

所属栏目:非线性光学

基金项目:国家自然科学基金(11475063)

收稿日期:2018-04-09

修改稿日期:2018-04-26

网络出版日期:2018-05-08

作者单位    点击查看

王苗:华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
杭超:华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062

联系人作者:杭超(chang@phy.ecnu.edu.cn); 王苗(wangm_ecnu@163.com);

【1】Noda J, Okamoto K, Sasaki Y. Polarization-maintaining fibers and their applications[J]. Journal of Lightwave Technology, 1986, 4(8): 1071-1089.

【2】Agrawal G. Nonlinear fiber optics[M]. Jia D F, Ge C F, et al. Transl. 5th ed. Beijing: Electronic Industry Press, 2013.
阿戈沃. 非线性光纤光学[M]. 贾东方, 葛春风, 等, 译. 5版. 北京: 电子工业出版社, 2013.

【3】Fleischhauer M, Imamogulu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media[J]. Reviews of Modern Physics, 2005, 77(2): 633-673.

【4】Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397(6720): 594-598.

【5】Kash M M, Sautenkov V A, Zibrov A S, et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas[J]. Physical Review Letters, 1999, 82(26): 5229-5232.

【6】Budker D, Kimball D F, Rochester S M, et al. Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation[J]. Physical Review Letters, 1999, 83(9): 1767-1770.

【7】Liu C, Dutton Z, Behroozi C H, et al. Observation of coherent optical information storage in an atomic medium using halted light pulses[J]. Nature, 2001, 409(6819): 490-493.

【8】Fleischhauer M, Lukin M D. Dark-state polaritons in electromagnetically induced transparency[J]. Physical Review Letters, 2000, 84(22): 5094-5097.

【9】Heinze G, Hubrich C, Halfmann T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute[J]. Physical Review Letters, 2013, 111(3): 033601.

【10】Pavone F S, Bianchini G, Cataliotti F S, et al. Birefringence in electromagnetically induced transparency[J]. Optics Letters, 1997, 22(10): 736-738.

【11】Wielandy S, Gaeta A L. Coherentcontrol of the polarization of an optical field[J]. Physical Review Letters, 1998, 81(16): 3359-3362.

【12】McGloin D, Dunn M H, Fulton D J. Polarization effects in electromagnetically induced transparency[J]. Physical Review A, 2000, 62(5): 053802.

【13】Wang B, Li S J, Ma J, et al. Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency[J]. Physical Review A, 2006, 73(5): 051801.

【14】Cho D, Choi J M, Kim J M, et al. Optically induced Faraday effect using three-level atoms[J]. Physical Review A, 2005, 72(2): 023821.

【15】Zhang H R, Zhou L, Sun C P. Birefringence lens effects of an atom ensemble enhanced by an electromagnetically induced transparency[J]. Physical Review A, 2009, 80(1): 013812.

【16】Karpa L, Weitz M. A Stern-Gerlach experiment for slow light[J]. Nature Physics, 2006, 2(5): 332-335.

【17】Guo Y, Zhou L, Kuang L M, et al. Magneto-optical Stern-Gerlach effect in an atomic ensemble[J]. Physical Review A, 2008, 78(1): 013833.

【18】Hang C, Huang G X. Stern-Gerlach effect of weak-light ultraslow vector solitons[J]. Physical Review A, 2012, 86(4): 043809.

【19】Ottaviani C, Rebic' S, Vitali D, et al. Cross phase modulation in a five-level atomic medium: Semiclassical theory[J]. The European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 2006, 40(2): 281-296.

【20】Hang C, Huang G X. Weak-light ultraslow vector solitons via electromagnetically induced transparency[J]. Physical Review A, 2008, 77(3): 033830.

【21】Li B, Qi Y H, Niu Y P, et al. Superluminal optical vector solitons in a five-level M-type atomic system[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48(6): 065501.

【22】Hamedi H R, Ruseckas J, Juzeliūnas G. Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50(18): 185401.

【23】Newell A C, Moloney J V. Nonlinear optics[M]. Redwood City: Addison Wesley, 1992.

【24】Yang Y F, Yan C X, Hu C H, et al. Polarization aberration analysis of coherent laser communication system[J]. Acta Optica Sinica, 2016, 36(11): 1106003.
杨宇飞, 颜昌翔, 胡春晖, 等. 相干激光通信光学系统偏振像差研究[J]. 光学学报, 2016, 36(11): 1106003.

【25】Zhang D, Hao S Q, Zhao Q S, et al. Atmospheric laser communication based on depolarization ratio detection[J]. Acta Optica Sinica, 2016, 36(11): 1106008.
张岱, 郝士琦, 赵青松, 等. 基于退偏振比探测的大气激光通信[J]. 光学学报, 2016, 36(11): 1106008.

引用该论文

Wang Miao,Hang Chao. Intrapulse Four-Wave Mixing and Four-Component Ultraslow Optical Solitons[J]. Acta Optica Sinica, 2018, 38(10): 1019001

王苗,杭超. 脉冲内四波混频与四分量超慢光孤子[J]. 光学学报, 2018, 38(10): 1019001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF