首页 > 论文 > 光学学报 > 38卷 > 10期(pp:1028001--1)

基于VG-DBSCAN算法的大场景散乱点云去噪

Large-Scale Scattered Point-Cloud Denoising Based on VG-DBSCAN Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对城市环境下三维激光雷达(LiDAR)点云数据密度不均匀、离群噪点多而不利于后期点云帧间匹配的问题,提出一种应用于城市环境下大规模散乱LiDAR点云的离群噪点滤除算法。该算法对传统的基于密度的噪声应用空间聚类(DBSCAN)算法进行改进,通过对三维点云进行体素栅格划分,创建了一个由栅格单元组成的集合,以此大幅减小每个对象在数据空间中邻域的搜索范围。改进后的算法能够快速发现各个聚类,使目标点云与离群点分离,从而剔除点云中的离群噪点。实验结果表明:所提算法能够实时处理点云数据,在保证点云三维几何特征的同时能有效识别并滤除点云中的离群噪点,降低点云规模,加快点云后续处理的效率,使帧间匹配的精确度提高了2倍,且匹配耗时仅为去噪处理前的1/3。

Abstract

Non-uniform 3D light detection and ranging (LiDAR) point-cloud data with outlier noises are not conducive to interframe point-cloud-matching in urban environments. Thus, an outlier noise filtering algorithm for large-scale scattered LiDAR point-cloud in urban environments is proposed. This algorithm improves the traditional density-based spatial clustering of applications with noise (DBSCAN) algorithm by applying voxel-grid partitioning to the three-dimensional point-cloud to create a set of grid cells, which greatly reduces the search scope of each object′s neighborhood in the data-space range. The improved algorithm can quickly find each cluster, which separates the target point-cloud from the outliers, thus eliminating the outlier noise in the point-cloud. The experimental results show that the proposed algorithm can process point-cloud data in real-time, ensure three-dimensional geometric features of point-cloud, effectively recognize and filter out outlier noise, reduce the scale of point-cloud, and speed up the subsequent processing efficiency of the point-cloud.Using this algorithm, the accuracy of matching between the frames is doubled, and the matching time is only one-third of the time before denoising.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP242

DOI:10.3788/aos201838.1028001

所属栏目:遥感与传感器

基金项目:国家重点研发计划(2016YFB0101001-6)

收稿日期:2018-04-20

修改稿日期:2018-05-10

网络出版日期:2018-05-16

作者单位    点击查看

赵凯:陆军军事交通学院, 天津 300161
徐友春:军事交通运输研究所, 天津 300161
李永乐:军事交通运输研究所, 天津 300161
王任栋:陆军军事交通学院, 天津 300161

联系人作者:赵凯(zhkai929@126.com); 徐友春(xu56419@126.com);

【1】Uehara K, Saito H, Hara K. Line-based SLAM considering directional distribution of line features in an urban environment[C]. International Conference on Computer Vision Theory and Applications, 2017, 6: 255-264.

【2】Han D B, Xu Y C, Wang R D, et al. Calibration of three-dimensional lidar extrinsic parameters based on multiple-point clouds matching[J]. Laser & Optoelectronics Progress, 2018, 55(2): 022803.
韩栋斌, 徐友春, 王任栋, 等. 基于多对点云匹配的三维激光雷达外参数标定[J]. 激光与光电子学进展, 2018, 55(2): 022803.

【3】Chen G B, Gao Z H, He L. Step-by-step automatic calibration algorithm for exterior parameters of 3D lidar mounted on vehicle[J]. Chinese Journal of Lasers, 2017, 44(10): 1010004.
陈贵宾, 高振海, 何磊. 车载三维激光雷达外参数的分步自动标定算法[J]. 中国激光, 2017, 44(10): 1010004.

【4】Kim J U, Kang H B. LiDAR based 3D object detection using CCD information[C]. IEEE Third International Conference on Multimedia Big Data, California, 2017: 1701-1750.

【5】Xiong F G, Huo W, Han X, et al. Removal method of mismatching keypoints in 3D point cloud[J]. Acta Optica Sinica, 2018, 38(2): 0210003.
熊风光, 霍旺, 韩燮, 等. 三维点云中关键点误匹配剔除方法[J]. 光学学报, 2018, 38(2): 0210003.

【6】Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising [J]. ACM Transactions on Graphics, 2003, 22(3): 950-953.

【7】Nie J H, Hu Y, Ma Z. Outlier detection of scattered point cloud by classification[J]. Journal of Computer-Aided Design & Computer Graphics, 2011, 23(9): 1526-1532.
聂建辉, 胡英, 马孜. 散乱点云离群点的分类识别算法[J]. 计算机辅助设计与图形学学报, 2011, 23(9): 1526-1532.

【8】Li R Z, Yang M, Ran Y, et al. Point cloud denoising and simplification algorithm based on method library[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011008.
李仁忠, 杨曼, 冉媛, 等. 基于方法库的点云去噪与精简算法[J]. 激光与光电子学进展, 2018, 55(1): 011008.

【9】Su B Y, Ma J Y, Peng Y S, et al. Algorithm for RGBD point cloud denoising and simplification based on K-means clustering[J]. Journal of System Simulation, 2016, 28(10): 2329-2334.
苏本跃, 马金宇, 彭玉升, 等. 基于K-means聚类的RGBD点云去噪和精简算法[J]. 系统仿真学报, 2016, 28(10): 2329-2334.

【10】Ester M, Kriegel H P, Xu X. A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]. International Conference on Knowledge Discovery and Data Mining, Oregon, 1996: 226-231.

【11】Rusu R B, Cousins S. 3D is here: point cloud library (PCL)[J]. Proceedings of the IEEE, 2011, 47(10): 1-4.

引用该论文

Zhao Kai,Xu Youchun,Li Yongle,Wang Rendong. Large-Scale Scattered Point-Cloud Denoising Based on VG-DBSCAN Algorithm[J]. Acta Optica Sinica, 2018, 38(10): 1028001

赵凯,徐友春,李永乐,王任栋. 基于VG-DBSCAN算法的大场景散乱点云去噪[J]. 光学学报, 2018, 38(10): 1028001

被引情况

【1】赵宗泽,王春阳,王宏涛,王双亭. 多窗口顶帽变换机载激光点云噪声去除. 激光与光电子学进展, 2018, 55(11): 112802--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF