首页 > 论文 > 中国激光 > 45卷 > 10期(pp:1005002--1)

应用于激光回光探测的高效窄带光栅光谱滤波技术

High Efficient Narrow-Band Grating Spectral Filtering Technology Applied to Laser Echo Detection

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在强背景下的窄线宽激光回光探测研究中, 采用光谱滤波的方式可以滤除背景光, 提高探测系统的信噪比; 对于光栅滤波系统而言, 考虑到信号光经过大气信道传输后会引起波前相位畸变, 而这会对系统的滤波性能产生一定影响, 故而有必要对其进行深入研究。针对光栅光谱滤波在激光大气传输探测方向的应用, 从激光大气传输理论和光栅衍射原理出发, 建立了光栅在入射光场为大气扰动光场时的光谱光强分布仿真模型, 分析了大气相干长度以及系统结构参数对系统性能的影响, 给出了光栅光谱滤波技术系统及大气适用条件, 当大气相干长度r0>0.05 m时, 得到了亚纳米级的光谱滤波线宽(半峰全宽FWHM为0.3 nm), 有效光谱的透射率也超过了0.90, 并通过大量仿真实验进行了验证。

Abstract

In the study of narrow linewidth laser light echol detection under strong background, we utilize spectral filtering method to filter out background light and improve the signal-to-noise ratio. For the grating filter system, the transmission of signal light through the atmospheric channel will cause the wavefront phase distortion, and this will have a certain effect on the filtering performance of the system, so it is necessary to study it further. Aiming at the application of grating spectral filtering in the laser atmospheric transmission detection direction, based on the laser atmospheric transmission theory and the grating diffraction principle, we establish the simulation model of the spectral intensity distribution of the grating when the incident light field is atmospheric disturbance light field. The influences of atmospheric coherent length and system structural parameters on system performance are analyzed. The system of the grating spectral filtering technology and the atmospheric applicable conditions are given. When the atmospheric coherent length r0 is greater than 0.05 m, sub-nanometer level spectral filter linewidth (full width at half maximum is 0.3 nm) is obtained, and the transmission of the effective spectrum exceeds 0.90. The results are verified by a large number of simulation experiments.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/cjl201845.1005002

所属栏目:光束传输与控制

基金项目:中国工程物理研究院高能激光科学与技术重点实验室基金(CAEP2017090623210)

收稿日期:2018-03-19

修改稿日期:2018-04-09

网络出版日期:2018-04-15

作者单位    点击查看

许放:中国工程物理研究院应用电子学研究所, 四川 绵阳 621900中国工程物理研究院研究生院, 北京 100088
万敏:中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
颜宏:中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
张永红:中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
谢庚承:中国工程物理研究院应用电子学研究所, 四川 绵阳 621900中国工程物理研究院研究生院, 北京 100088

联系人作者:万敏(wanmin@caep.cn); 许放(772547351@qq.com);

【1】Huang T, Hu H L, H Y H, et al. Laser detection in the identification of space target[J]. Laser & Infrared, 2010, 40(7): 685-689.
黄涛, 胡惠灵, 胡以华, 等. 空间目标识别中的激光探测技术[J]. 激光与红外, 2010, 40(7): 685-689.

【2】Zhou Y P, Shu R, Tao K Y, et al. Study of photoelectric detecting and identifying of space target[J]. Optical Technique, 2007, 33(1): 68-73,76.
周彦平, 舒锐, 陶坤宇, 等. 空间目标光电探测与识别技术的研究[J]. 光学技术, 2007, 33(1): 68-73, 76.

【3】Rork E W, Lin S S, Yakutis A J. Ground-based electro-optical detection of artificial satellites in daylight from reflected sunlight[C]. NASA STI/Recon Technical Report N, 1982: 83.

【4】He C, Zhu Q X. A study of technology for detection of nonluminous artificial satellites in daylight[Z/OL].[2018-03-15]. http://www.researchgate.net/publication/235157587 A Study of Technology for Detection of Nonluminous Artificial Satellites in Daylight. (Baitian Feizifaguang Tianti Mubiao Tance Jishu De Yanjiu).

【5】Wu L, Ying J J, Geng B. Effect on laser propagation in the atmospheric turbulence[J]. Laser & Infrared, 2008, 38(10): 974-977.
武琳, 应家驹, 耿彪. 大气湍流对激光传输的影响[J]. 激光与红外, 2008, 38(10): 974-977.

【6】Xu Z Y, Bo Y, Peng Q J, et al. Progress on sodium laser guide star[J]. Infrared and Laser Engineering, 2016, 45(1): 13-25.
许祖彦, 薄勇, 彭钦军, 等. 激光钠导引星技术研究进展[J]. 红外与激光工程, 2016, 45(1): 13-25.

【7】Sun F Y. Study on the characteristic of the whole sky background radiation[D]. Hefei: University of Science and Technology of China, 2016.
孙凤萤. 全天空背景光谱辐射特性研究[D]. 合肥: 中国科学技术大学, 2016.

【8】Sun C. Study on Si-APD noise characteristics in laser radar under background light[D]. Nanjing: Nanjing University of Science and Technology, 2014.
孙超. 背景光作用下激光雷达中Si-APD噪声特性研究[D]. 南京: 南京理工大学, 2014.

【9】Wan M, Su Y, Yang R, et al. Improvement of signal to noise ratio in astronomical objects detection in daytime[J]. High Power Laser and Particle Beams, 2003, 15(12): 1151-1154.
万敏, 苏毅, 杨锐, 等. 提高白天观测星体信噪比的方法研究[J]. 强激光与粒子束, 2003, 15(12): 1151-1154.

【10】Tan B T, Jing C Y, Wang B G, et al. Precision of magnitude measurement caused by spectral filtering technology[J]. High Power Laser and Particle Beams, 2009, 21(2): 221-224.
谭碧涛, 景春元, 王宝国, 等. 光谱滤波技术对星等测量精度的影响[J]. 强激光与粒子束, 2009, 21(2): 221-224.

【11】Wang F. Study on ultra-narrow-band birefringence filter technology[D]. Beijing: China Academy of Engineering Physics, 2007.
王锋. 超窄带双折射滤光器技术研究[D]. 北京: 中国工程物理研究院, 2007.

【12】Gelbwachs J A. Atomic resonance filters[J]. IEEE Journal of Quantum Electronics, 1988, 24(7): 1266-1277.

【13】Wang F, Hu X Y, Ye Y D. Development of ultra-narrow band filter technique[J]. Laser & Optoelectronics Progress, 2007, 44(6): 62-67.
王锋, 胡晓阳, 叶一东. 超窄带滤光技术研究进展[J]. 激光与光电子学进展, 2007, 44(6): 62-67.

【14】Zhang Y D, Yuan P, Bi Y, et al. Ultranarrow-band optical filter[J]. Laser Technology, 1999, 23(5): 257-261.
掌蕴东, 袁萍, 毕勇, 等. 超窄带光学滤波器[J]. 激光技术, 1999, 23(5): 257-261.

【15】Xu F, Yan H, Zhang Y H, et al. Ultra-narrow linewidth spectral filtering technology based on double gratings[J]. Chinese Journal of Lasers, 2017, 44(8): 0811003.
许放, 颜宏, 张永红, 等. 基于双光栅的超窄线宽光谱滤波技术[J]. 中国激光, 2017, 44(8): 0811003.

【16】Zhu Z M. Physical opticals[M]. Wuhan: Huazhong University of Science and Technology Press, 2009: 147-155.
竺子民. 物理光学[M]. 武汉: 华中科技大学出版社, 2009: 147-155.

引用该论文

Xu Fang,Wan Min,Yan Hong,Zhang Yonghong,Xie Gengcheng. High Efficient Narrow-Band Grating Spectral Filtering Technology Applied to Laser Echo Detection[J]. Chinese Journal of Lasers, 2018, 45(10): 1005002

许放,万敏,颜宏,张永红,谢庚承. 应用于激光回光探测的高效窄带光栅光谱滤波技术[J]. 中国激光, 2018, 45(10): 1005002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF